An Appropriate Number of Neurons in a Hidden Layer for Personal Authentication Using EEG Signals
Main Article Content
Abstract
This study discusses the appropriate number of neurons in hidden layer for person authentication that uses delta brainwave signals. The principle of the neural network (supervised neural network), number of neurons in the hidden layer is one important factor to make learning more effective. The purpose of this study was to study the number of neurons in the hidden layer. In this study, 1000 data points of EEG signal in group of four channels, F4, P4, C4, and O2 are explored. The practical technique, Independent Component Analysis (ICA) by SOBIRO algorithm is considered clean and separates the individual signals from noise using the technique of supervised neural network for identifying 30 subjects. The number of neurons in the hidden layer 1-30 neural to test the accuracy of identifying information will be classified 20-30 subjects to find the appropriate number of neurons in the hidden layer in each group.
Article Details
บทความที่ได้รับการตีพิมพฺเป็นลิขสิทธิ์ของวารสาร
References
Circuits Syst Video Technol 14(1), pp.4–20.
2. Paranjape RB, Mahovsky J, Benedicenti L, Koles Z., 2001. The electroencephalogram as a
biometrics. Proc Can Conf Electr. Comput Eng 2, pp.1363–6.
3. Poulos M, Rangoussi M, Alexandris N, Evangelou., 2001. A On the use of EEG
features towards person identification via neural networks. Med Inform Internet Med 26(1),
pp.35–48.
4. Poulos M, Rangoussi M, Alexandris N, Evangelou A., 2002. Person identification from the EEG
using nonlinear signal classification. Methods Inf Med 41(1), pp.64–75.
5. Palaniappan R, Ravi KVR., 2003. A new method to identify individuals using signals from the
brain. In: Proceedings of fourth international conference information communication and
signal processing, pp 15–18.
6. Palaniappan R, Mandic D.P., 2007. Biometrics from brain electrical activity: a machine
learning approach. IEEE Trans Pattern Anal Mach Intell 29, pp.738–42.
7. Palaniappan R., 2004. Method of identifying individuals using VEP signals and neural
network. IEEE Proc Sci Mea Technol 151(1), pp.16–20.
8. Palaniappan R, Mandic D.P., 2007. EEG based biometric framework for automatic identity
verification. VLSI Signal Process 2(2), pp.243–50.
9. Marcel S, Millan J., 2007. Person authentication using brainwaves (EEG) and maximum a
posteriori model adaptation. IEEE Trans Pattern Anal Mach Intell 29(4), pp.743–52.
10. Tangkraingkij P, Lursinsap C, Sanguansintukul S, Desudchit.T., 2009. Selecting relevant EEG
signal locations for personal identification problem using ICA and neural network.
In: Eighth IEEE/ACIS international conference on computer and information science (ICIS 2009),
pp.616–21.
11. Tangkraingkij P, Lursinsap C, Sanguansintukul S, Desudchit T., 2010. Personal identification
by EEG using ICA and neural network. In: Computational science and its applications
(ICCSA2010), Lecture Notes in Computer Science vol 6018, pp 419–30.
12. Tangkraingkij P, Lursinsap C, Sanguansintukul S, Desudchit T.,2013. Insider and outsider
person authentication with minimum number of brain wave signals by neural and homoge
neous identity filtering. Neural Computing & Applications, Volume 22, Issue 1 Supplement,
pp. 463-76.
13. Tangkraingkij P., 2015. Significant Frequency Range of Brainwave Signals for Authentication.
Study in Computer Intelligence 612 (Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing 2015), pp.103-113.
14. Boger, Z., and Guterman, H., 1997. Knowledge extraction from artificial neural network
models: IEEE Systems, Man, and Cybernetics Conference, Orlando, FL, USA.
15. Berry, M.J.A., and Linoff, G., 1997. Data Mining Techniques, NY: John Wiley & Sons.
16. Blum, A., 1992. Neural Networks in C++, NY: Wiley.
17. Cichocki, A., 2004. Blind Signal Processing Methods for Analyzing Multichannel Brain
Signals, International Journal of Bioelectromagnetism 6. (1).
18. Cichocki, A., Amari, S.,Siwek, K., Tanaka T., et al.: ICALAB toolboxes. https://www.bsp.brain.
riken.jp/ICALAB