The Impact of PM 2.5 on Pulmonary Immunophysiology and the Lung Microbiome

Main Article Content

Sathid Aimjongjun
Raynhuga Nabunyareuk
Pavarisa Thepsena
Panissara Ingkapak
Punnisa Phongthanapanich
Pincha Tantisak
Pannapat Srikullayanunt
Anshisa Phongchaisrikun

Abstract

Air pollution is a ubiquitous environmental challenge, with fine particulate matter (PM 2.5) being a prominent component, originating from diverse sources including combustion, dust, soil, biological particles, and sea salt aerosols. This review delves into the complex interplay between PM 2.5 and its various sources, elucidating their multifaceted impact on the pulmonary immune system and lung microbiome. PM 2.5, characterized by distinct compositions and biological constituents, can evoke inflammatory responses, oxidative stress, and immune dysregulation within the respiratory tract, precipitating a range of respiratory ailments. Concurrently, PM 2.5 can exert influences on the lung microbiome, potentially unsettling microbial equilibrium and compromising its protective functions. Dysbiosis induced by PM 2.5 exposure may not only compromise immune defenses but also extend its influence via the gut-lung axis, impacting systemic health. Addressing the pernicious effects of PM 2.5 necessitates a holistic approach, encompassing stringent air quality regulations, emission reductions, cleaner energy promotion, and public awareness. Moreover, further research endeavors are indispensable to unravel the intricate interactions and develop targeted interventions that mitigate PM 2.5-induced perturbations in lung immunophysiology and the microbiome. This comprehensive understanding is pivotal in fostering cleaner air, healthier lungs, and enhanced overall healthiness on a global scale

Article Details

Section
Review Article

References

McDuffie EE, Martin RV, Spadaro JV, et al., Source sector and fuel contributions to ambient PM2.5 and

attributable mortality across multiple spatial scales. Nat. Commun, 2021;12(1):3594.

Nares C, Subuntith N, Sukanda L, Tida K. Levels and major sources of PM 2.5 and PM 10 in Bangkok

Metropolitan Region. Environment International, 2008;34(5):671-7.

Kyung SY, Jeong SH. Particulate-Matter Related Respiratory Diseases. Tuberc Respir Dis (Seoul),

;83(2):116-21.

Loannis M, Elisavet S, Agathangelos S, Eugenia B. Environmental and Health Impacts of Air

Pollution: A Review. Front Public Health, 2020;8:14.

Yang L, C Li, X Tang. The Impact of PM (2.5) on the Host Defense of Respiratory System.

Front Cell Dev Biol. 2020;8:91.

Xing UF, Xu YH, Shi MS, Lian YX. The impact of PM 2.5 on the human respiratory system.

J Thorac Dis. 2016;8(1):E69-74.

Wei T, M Tang. Biological effects of airborne fine particulate matter (PM 2.5) exposure on

pulmonary immune system. Environ Toxicol Pharmacol, 2018;60:195-201.

Chen YW, Huang MZ, Chen CL, et al. PM 2.5 impairs macrophage functions to exacerbate

pneumococcus-induced pulmonary pathogenesis. Part fibre toxicol, 2020;17(1):37.

Thangavel P, Park D, Lee YC. Recent Insights into Particulate Matter PM (2.5) Mediated Toxicity in Humans: An

Overview. Int J Environ Res Public Health, 2022;19(12).

Xue Y, Chu J, Li Y, Kong X. The influence of air pollution on respiratory microbiome: A link to respiratory disease.

Toxicol Lett, 2020;334:14-20.

Li J, Hu Y, Liu L, Wang Q, Zeng J, Chen C. PM 2.5 exposure perturbs lung microbiome and its metabolic profile

in mice. Science of The Total Environment, 2020;721:137432.

Mack SM, Madl AK, Pinkerton KE. Respiratory Health Effects of Exposure to Ambient Particulate Matter and

Bioaerosols. Compr Physiol, 2019;10(1):1-20.

Hiraiwa, K, van Eeden SF. Contribution of lung macrophages to the inflammatory responses induced by exposure to air

pollutants. Mediators Inflamm, 2013:619523.

Liu Y, Xu J, Shi J, et al. Effects of short-term high-concentration exposure to PM 2.5 on pulmonary tissue damage

and repair ability as well as innate immune events. Environ. Pollut, 2023;319:121055.

Hu R, Xie XY, Xu SK, et al. PM (2.5) Exposure Elicits Oxidative Stress Responses and Mitochondrial Apoptosis

Pathway Activation in HaCaT Keratinocytes. Chin Med J (Engl), 2017;130(18):2205-14.

Jankowska KM, Roman A., Nalepa I. The Air We Breathe: Air Pollution as a Prevalent Proinflammatory Stimulus

Contributing to Neurodegeneration. Front. cell. neurosci, 2021:15.

Konduracka E, Rostoff P. Links between chronic exposure to outdoor air pollution and cardiovascular diseases: a

review. Environ. Chem. Lett. 2022;20(5):2971-88.

Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological,

biomedical and clinical evidence. J Thorac Dis, 2016;8(1):E8-e19.

Basith S, Manavalan B, Shin TH, et al. The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A

Review of the Invisible Killer. Nanomater. 2022;12,DOI: 10.3390/nano12152656.

Mazumder MHH, Gandhi J, Majumder N, et al. Lung-gut axis of microbiome alterations following co-exposure to

ultrafine carbon black and ozone. Part Fibre Toxicol, 2023;20(1):15.

Wang J, Yan Y, Si H, et al. The effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the

regulation of Nrf2. Ecotoxicol Environ Saf, 2023;254:114702.

Yagi K, Huffnagle GB, Lukacs NW, Asai N. The Lung Microbiome during Health and Disease. Int J Mol Sci,

;22(19).

Huffnagle GB, Dickson RP. Lukacs N.W. The respiratory tract microbiome and lung inflammation: a two-way

street. Mucosal Immunol, 2017;10(2):299-306.

Zafar H, Saier MH. Understanding the Relationship of the Human Bacteriome with COVID-19 Severity and

Recovery. Cells, 2023;12,DOI: 10.3390/cells12091213.

Dekaboruah E, Suryavanshi MV, Chettri D, Verma AK. Human microbiome: an academic update on human body

site specific surveillance and its possible role. Arch. Microbiol, 2020; 202(8):2147-67.

Alsayed A, Anus A, Heba K, et al. Molecular Accounting and Profiling of Human Respiratory Microbial

Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and

Treatment. Int. J. Mol. Sci, 2023;24,DOI:10.3390/ijms24044086.

de Steenhuijsen Piters WAA, Sanders EAM, D. Bogaert. The role of the local microbial ecosystem in respiratory

health and disease. Philosophical Transactions B, 2015;370(1675):20140294.

Li Z, Li Y, Sun Q, et al. Targeting the Pulmonary Microbiota to Fight against Respiratory Diseases. Cells, 2022;11(5).

Thottarath PA, Damodaran A, Kumar NS, Viswanad V. Deducing the Interplay Between Gut Flora and Respiratory

Diseases: A New Therapeutic Strategy? Indian J Microbiol, 2023;63(1):1-17.

Russo C, Colaianni V, Ielo G, Valle MS, Spicuzza L. Impact of Lung Microbiota on COPD. Biomedicines,

;10(6).

Overdos K, Bellos G, Kokolatou L, et al. Lung Microbiome in Asthma: Current Perspectives. J Clin Med, 2019;8(11).

Dong X, Yao S, Deng L, et al. Alterations in the gut microbiota and its metabolic profile of PM 2.5 exposure-

induced thyroid dysfunction rats. Sci Total Environ. 2022;doi:10.1016/j.scitotenv.2022;156402.

Hime NJ, Marks GB, Cowie CT. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution

from Five Emission Sources. Int J Environ Res Public Health, 2018;15(6).

Murillo-Tovar MA, Barradas-Gimate A, Arias-Montoya MI, Saldarriaga-Norena HA. Polycyclic Aromatic

Hydrocarbons (PAHs) Associated with PM 2.5 in Guadalajara, Mexico:Environmental Levels, Health Risks and

Possible Sources. Environments 2018;5:62.

Nagappan A, Park SB, Lee SJ, Moon Y. Mechanistic Implications of Biomass-Derived Particulate Matter for

Immunity and Immune Disorders. Toxics, 2021;9,DOI:10.3390/toxics 9020018.

Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on

the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol., 2022;19(1):67.

Yu YY, Jin H, Lu Q. Effect of polycyclic aromatic hydrocarbons on immunity. J Transl Autoimmun, 2022;5:100177.

Thompson PA, Khatami M, Baglole CJ, et al. Environmental immune disruptors, inflammation

and cancer risk. Carcinog. 2015;36:S232-S253.

Li T, Hu R, Chen Z, et al. Fine particulate matter (PM (2.5)): The culprit for chronic lung diseases in China.

Chronic Dis Transl Med, 2018;4(3):176-86.

Li R., Zhou R, Zhang J. Function of PM 2.5 in the pathogenesis of lung cancer and chronic airway inflammatory

diseases. Oncol Lett, 2018;15(5):7506-14.

Wu JZ, Ge DD, Zhou LF, Hou LY, Zhou Y, Li QY. Effects of particulate matter on allergic respiratory diseases.

Chronic Dis Transl Med, 2018;4(2):95-102.

Wei S, Liao J, Xue T, et al. Ambient fine particulate matter and allergic symptoms in the middle-aged and elderly

population: results from the PIFCOPD study. Respir. Res, 2023;24(1):139.

Chen YW, Li SW, Lin CD, et al. Fine Particulate Matter Exposure Alters Pulmonary Microbiota

Composition and Aggravates Pneumococcus-Induced Lung Pathogenesis. Front Cell Dev Biol,

;8:570484.

Lira-Lucio JA, Falfan-Valencia R, Ramirez-Venegas A, et al. Lung Microbiome Participation in Local Immune

Response Regulation in Respiratory Diseases. Microorganisms, 2020;8(7).

Yang D, Xing Y, Song X, Qian Y. The impact of lung microbiota dysbiosis on inflammation. Immunology,

;159(2):156-66.

Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev.

Microbiol, 2017;15(1):55-63.

Castaneda AR, Bein KJ, Smiley-Jewell S, Pinkerton KE. Fine particulate matter (PM (2.5)) enhances allergic

sensitization in BALB/c mice.

Kuroda E, Temizoz B, Coban C, Ozasa K, Iand shii K.J. Particulate-Driven Type-2 Immunity and Allergic

Responses. Current Topics in Environmental Health and Preventive Medicine. Springer

:63-82.

Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated

toxicity: Recent insights. Redox Biol, 2020;34:101545.

Hongli L, John T, Matthew K, Zhi D. PM 2.5 and PM 10 emissions from agricultural soils by wind erosion. Aeolian

Res, 2015;19:171-82.

Ghosal S, Wall S. Identifying regional soil as the potential source of PM (2.5) particulate matter on air filters

collected in Imperial Valley, California - A Raman micro-spectroscopy study. Environ Pollut, 2019;253:181-9.

Fussell JC, Kelly FJ. Mechanisms underlying the health effects of desert sand dust. Environ Int,

;157:106790.

Vanka KS, Shukla S, Gomez HM, et al. Understanding the pathogenesis of occupational coal and silica

dust-[associated lung disease. Eur Respir Rev, 2022;31(165).

Zhang L, Ou C, Magana-Arachchi D., et al. Indoor Particulate Matter in Urban Households: Sources, Pathways,

Characteristics, Health Effects, and Exposure Mitigation. Int J Environ Res Public Health, 2021;18(21).

Loxham M, Nieuwenhuijsen MJ. Health effects of particulate matter air pollution in underground

railway systems-a critical review of the evidence. Part Fibre Toxicol, 2019;16(1):12.

Arahani VJ, Altuwayjiri A, Pirhadi M, et al. The oxidative potential of particulate matter (PM)

in different regions around the world and its relation to air pollution sources. Environ Sci

Atmos, 2022;2(5):1076-86.

Wang W, Zhou J, Chen M, et al. Exposure to concentrated ambient PM (2.5) alters the

composition of gut microbiota in a murine model. Part Fibre Toxicol, 2018;15(1):17.

Cao C, Jiang W, Wang B, et al. Inhalable Microorganisms in Beijing’s PM 2.5 and PM 10

Pollutants during a Severe Smog Event. Environ Sci Technol, 2014;48(3):1499-1507.

Lam HCY, Jarvis D, Fuertes E. Interactive effects of allergens and air pollution on respiratory health: A systematic

review. Sci Total Environ, 2021;757:143924.

Clementi N, Ghosh S, De Santis M, et al. Viral Respiratory Pathogens and Lung Injury. Clin

Microbiol Rev, 2021;34(3).

Zhang H, He F, Li P, Hardwidge PR, Li N, Peng Y. The Role of Innate Immunity in Pulmonary Infections. Biomed Res Int,

;6646071.

Marchetti S, Hassan SK, Shetaya WH, et al. Seasonal Variation in the Biological Effects

of PM 2.5 from Greater Cairo. Int J Mol Sci, 2019;20(20).

Li H, Shan Y, Huang Y, et al. Bacterial Community Specification in PM 2.5 in Different Seasons in Xinxiang,

Central China. AAQR, 2019;19(6):1355-64.

Ghosh B, Lal H, Srivastava A. Review of bioaerosols in indoor environment with special reference to sampling,

analysis and control mechanisms. Environ Int, 2015;85:254-72.

Liu H, Hu Z, Zhou M, et al. PM 2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the

atmosphere. Environ Pollut, 2022;295:118715.

Garcia A, Santa-Helena E, De Falco A, de Paula Ribeiro J, Gioda A, Gioda CR. Toxicological

Effects of Fine Particulate Matter (PM (2.5)): Health Risks and Associated Systemic Injuries-Systematic Review. Water Air Soil Pollut, 2023;234(6):346.

Kim KH, Jahan SA, Kabir E. A review on human health perspective of air pollution with

respect to allergies and asthma. Environ. Int., 2013;59:41-52.

Shahbaz MA, Martikainen MV, Ronkko TJ, et al. Urban air PM modifies differently immune

defense responses against bacterial and viral infections in vitro. Environ Res, 2021;192:110244.

Migliaccio CT, Kobos E, King QO, Porter V, Jessop F, Ward T. Adverse effects of wood smoke

PM 2.5 exposure on macrophage functions. Inhal Toxicol. 2013;25:67-76.

Libalova H, Milcova A, Cervena T, et al. Kinetics of ROS generation induced by polycyclic

aromatic hydrocarbons and organic extracts from ambient air particulate matter in model human

lung cell lines. Mutat Res Genet Toxicol Environ Mutagen, 2018;827:50-8.

Kelly FJ, Fussell C. Global nature of airborne particle toxicity and health effects: a focus

on megacities, wildfires, dust storms and residential biomass burning. Toxicol Res, 2020;9(4):331-45.

Aguilera R, Corringham T, Gershunov, A et al. Wildfire smoke impacts respiratory health more

than fine particles from other sources: observational evidence from Southern California. Nat Commun, 2021;12(1):1493.

Murphy D, Froyd K, Bian H, et al. The distribution of sea-salt aerosol in the global troposphere.

Atmos. Chem. Phys., 2019;19(6):4093-104.

Zieger P, Vaisanen O, Corbin J, et al. Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun., 2017;8:15883.

Hosoki K, Boldogh I, Sur S. Innate responses to pollen allergens. Curr Opin Allergy Clin Immunol, 2015;15(1):79-88.

Rouadi PW, Idriss SA, Naclerio RM, et al. Immunopathological features of air pollution and

its impact on inflammatory airway diseases (IAD). World Allergy Organ J, 2020;13(10):100467.

Glencross DA, Ho TR, Camina N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on

the immune system. Free Radic Biol Med, 2020;151:56-68.

Serpa GL, Renton ND, Lee N, Crane MJ, Jamieson AM. Electronic Nicotine Delivery System Aerosol-induced Cell

Death and Dysfunction in Macrophages and Lung Epithelial Cells. Am J Respir Cell Mol Biol, 2020;63(3):306-16.

Olesiejuk, K, Chatubinski M. How does particulate air pollution affect barrier functions and inflammatory activity

of lung vascular endothelium? Allergy, 2023;78(3):629-38.

Ma Q. Polarization of Immune Cells in the Pathologic Response to Inhaled Particulates. Front Immunol, 2020;11:1060.

Matthias J, Heink S, Picard F, et al. Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in

proinflammatory cytokine microenvironments. J Clin Invest, 2020;130(9):4587-600.

Alcorn JF, Crowe CR, Kolls JK. TH17 cells in asthma and COPD. Annu Rev Physiol, 2010;72:495-516.

Li CJ, Zhang WD. Sea salt aerosols as a reactive surface for inorganic and organic acidic

gases in the Arctic troposphere. Atmos. Chem. Phys., 2015;15(19):11341-11353.

Kumawat C, Kumar A, Parshad J, et al. Microbial Diversity and Adaptation under Salt-Affected Soils: A Review.

Sustainability, 2022;14:DOI:10.3390/su14159280.

Nowoisky JF, Kampf CJ, Weber B, et al. Bioaerosols in the Earth system: Climate, health, and ecosystem

interactions. Atmos. Res, 2016;182:346-76.

Nan N, Zhipeng Y, Yaru Z, Rui C, Guohua Q, Nan S. Overview of PM 2.5 and health outcomes:

Focusing on components, sources, and pollutant mixture co-exposure. Chemosphere, 2023;323:138181.

Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease.

Nat. Rev. Microbiol., 2023;21(4):222-35.