Virtual Fetal Autopsy

Main Article Content

Patou Tantbirojn

Abstract

Determining the cause of stillbirth is crucial for understanding preventable factors and managing future pregnancies. Currently, many parents decline conventional autopsy due to its invasive nature. To address this, less invasive autopsy methods based on imaging technology have been introduced as more accessible and acceptable options for parents. In addition to radiographs, other traditional clinical imaging techniques such as magnetic resonance imaging (MRI), ultrasound, and computed tomography (CT) have been used in postmortem investigations, especially for fetuses over 20 weeks of gestation. Advanced techniques like high-field MRI (>7-T) and micro-focus computed tomography (micro-CT) have demonstrated higher diagnostic accuracy, though they remain limited by accessibility. This article aims to provide a perspective on “virtual fetal autopsy” from a pathologist’s point of view to enhance obstetricians’ understanding.

Article Details

How to Cite
(1)
Tantbirojn, P. . Virtual Fetal Autopsy. Thai J Obstet Gynaecol 2025, 33, 369-377.
Section
Special Article

References

Tantbirojn P. Practical initial evaluation of fetus and placenta of stillbirths for Obstetricians in Delivery Room. Thai J Obstet Gynaecol 2024;32:331-9.

Kang X, Carlin A, Cannie MM, Sanchez TC, Jani JC. Fetal postmortem imaging: an overview of current techniques and future perspectives. Am J Obstet Gynecol 2020;223:493-515.

Votino C, Cos Sanchez T, Bessieres B, et al. Minimally invasive fetal autopsy using ultrasound: a feasibility study. Ultrasound Obstet Gynecol 2018;52:776-83.

Staicu A, Albu C, Popa-Stanila R, et al. Whole-body non-forensic fetal virtopsy using postmortem magnetic resonance imaging at 7 Tesla vs classical autopsy. Ultrasound Obstet Gynecol 2024;64:661-8.

Rüegger CM, Bartsch C, Martinez RM, et al. Minimally invasive, imaging guided virtual autopsy compared to conventional autopsy in foetal, newborn and infant cases: study protocol for the paediatric virtual autopsy trial. BMC Pediatr 2014;14:15.

Ros PR, Li KC, Vo P, Baer H, Staab EV. Preautopsy magnetic resonance imaging: initial experience. Magn Reson Imaging 1990;8:303-8.

D'Hondt A, Cassart M, De Maubeuge R, Soto Ares G, Rommens J, Avni EF. Postmortem fetal magnetic resonance imaging: where do we stand? Insights Imaging 2018;9:591-8.

Lin X, Zhang Z, Teng G, et al. Measurements using 7.0 T post-mortem magnetic resonance imaging of the scalar dimensions of the fetal brain between 12 and 20 weeks gestational age. Int J Dev Neurosci 2011;29:885–9.

Staicu A, Albu C, Popa-Stanila R, et al. Potential clinical benefits and limitations of fetal virtopsy using high-field MRI at 7 Tesla versus stereomicroscopic autopsy to assess first trimester fetuses. Prenat Diagn 2019;39:505-18.

Tang H, Zhang Y, Dai C, et al. Postmortem 9.4-T MRI for fetuses with congenital heart defects diagnosed in the first trimester. Front Cardiovasc Med 2022;8:764587.

Dawood Y, Strijkers GJ, Limpens J, Oostra RJ, de Bakker BS. Novel imaging techniques to study postmortem human fetal anatomy: a systematic review on microfocus-CT and ultra-high-field MRI. Eur Radiol 2020;30:2280-92.

Kang X, Cannie MM, Arthurs OJ, et al. Post-mortem whole-body magnetic resonance imaging of human fetuses: a comparison of 3-T vs. 1.5-T MR imaging with classical autopsy. Eur Radiol 2017;27:3542–53.

Thayyil S, De Vita E, Sebire NJ, et al. Postmortem cerebral magnetic resonance imaging T1 and T2 in fetuses, newborns and infants. Eur J Radiol 2012;81:e232–8.

Norman W, Jawad N, Jones R, Taylor AM, Arthurs OJ. Perinatal and paediatric post-mortem magnetic resonance imaging (PMMR): sequences and technique. Br J Radiol 2016;89:20151028.

Arthurs OJ, Thayyil S, Olsen OE, et al. Magnetic resonance imaging autopsy study (MaRIAS) collaborative group. Diagnostic accuracy of post-mortem MRI for thoracic abnormalities in fetuses and children. Eur Radiol. 2014;24:2876–84.

Arthurs OJ, Barber JL, Taylor AM, Sebire NJ. Normal perinatal and paediatric postmortem magnetic resonance imaging appearances. Pediatr Radiol 2015;45:527–35.

Scola E, Conte G, Palumbo G, et al. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation: normal foetal brain development. Eur Radiol. 2018;28:363–71.

Arthurs OJ, Thayyil S, Owens CM, et al. Magnetic resonance imaging autopsy study (MaRIAS) collaborative group. Diagnostic accuracy of postmortem MRI for abdominal abnormalities in foetuses and children. Eur J Radiol 2015;84:474-81.

Ulm B, Dovjak GO, Scharrer A, et al. Diagnostic quality of 3Tesla postmortem magnetic resonance imaging in fetuses with and without congenital heart disease. Am J Obstet Gynecol 2021;225:189.e1-189.e30.

Staicu A, Albu C, Popa-Stanila R, et al. Diagnostic value of virtual autopsy using pm-MRI at 3T on malformed second trimester fetuses vs classic autopsy. PLoS One 2021;16:e0260357.

Thayyil S, Sebire NJ, Chitty LS, et al. MARIAS collaborative group. Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet. 2013;382:223–33.

Arthurs OJ, Thayyil S, Pauliah SS, et al. Diagnostic accuracy and limitations of post-mortem MRI for neurological abnormalities in fetuses and children. Clin Radiol 2015;70:872–80.

Ibarra Vilar P, De Luca L, Badr DA, et al. Learning curve for fetal postmortem ultrasound. Prenat Diagn 2024;44:15-27.

Kang X, Shelmerdine SC, Hurtado I, et al. Postmortem examination of human fetuses: comparison of two-dimensional ultrasound with invasive autopsy. Ultrasound Obstet Gynecol 2019;53:229–38.

Tuchtan L, Lesieur E, Bartoli C, et al. Diagnosis of congenital abnormalities with post-mortem ultrasound in perinatal death. Diagn Interv Imaging 2018;99:143–9.

Shelmerdine S, Langan D, Sebire NJ, Arthurs O. Diagnostic accuracy of perinatal post-mortem ultrasound (PMUS): a systematic review. BMJ Paediatr Open 2019;3:e000566.

Kang X, Resta S, Cos Sanchez T, Carlin A, Bevilacqua E, Jani JC. Impact of the delay between fetal death and delivery on the success of postmortem ultrasound following termination of pregnancy. J Matern Fetal Neonatal Med 2021;34:1613-8.

Shelmerdine SC, Sebire NJ, Arthurs OJ. Diagnostic accuracy of postmortem ultrasound vs postmortem 1.5-T MRI for non-invasive perinatal autopsy. Ultrasound Obstet Gynecol 2021;57:449-58.

Arthurs OJ, Guy A, Thayyil S, et al. Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI. Eur Radiol 2016;26:2327-36.

Votino C, Cannie M, Segers V, et al. Virtual autopsy by computed tomographic angiography of the fetal heart: a feasibility study. Ultrasound Obstet Gynecol 2012;39:679–84.

Docter D, Dawood Y, Jacobs K, et al. Microfocus computed tomography for fetal postmortem imaging: an overview. Pediatr Radiol. 2023;53:632-9.

Dawood Y, Strijkers GJ, Limpens J, Oostra RJ, de Bakker BS. Novel imaging techniques to study postmortem human fetal anatomy: a systematic review on microfocus-CT and ultra-high-field MRI. Eur Radiol. 2020;30:2280-92.

Simcock IC, Shelmerdine SC, Hutchinson JC, et al. Human fetal whole-body postmortem microfocus computed tomographic imaging. Nat Protoc 2021;16:2594–614.

Gignac PM, Kley NJ, Clarke JA. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J Anat 2016;228:889–909.

Dawood Y, Honhoff C, van der Post AS, et al. Comparison of postmortem whole-body contrast-enhanced microfocus computed tomography and high-field magnetic resonance imaging of human fetuses. Ultrasound Obstet Gynecol 2022;60:109-17.

Hutchinson JC, Kang X, Shelmerdine SC, et al. Postmortem microfocus computed tomography for early gestation fetuses: a validation study against conventional autopsy. Am J Obstet Gynecol 2018;218:445.e1–12.

Arthurs OJ, Calder AD, Kiho L, Taylor AM, Sebire NJ. Routine perinatal and paediatric post-mortem radiography: detection rates and implications for practice. Pediatr Radiol 2014;44:252–7.

Bourlière-Najean B, Russel AS, Panuel M, et al. Value of fetal skeletal radiographs in the diagnosis of fetal death. Eur Radiol 2003;13:1046–9.

Shelmerdine SC, Arthurs OJ. Post-mortem perinatal imaging: what is the evidence? Br J Radiol. 2023;96:20211078.

Simcock IC, Lamouroux A, Sebire NJ, Shelmerdine SC, Arthurs OJ. Less-invasive autopsy for early pregnancy loss. Prenat Diagn 2023;43:937-49.

Shelmerdine SC, Hutchinson JC, Arthurs OJ, Sebire NJ. Latest developments in post-mortem foetal imaging. Prenat Diagn 2020;40:28-37.

Lewis C, Hutchinson JC, Riddington M, et al. Minimally invasive autopsy for fetuses and children based on a combination of post-mortem MRI and endoscopic examination: a feasibility study. Health Technol Assess 2019;23:1–104.

Hutchinson JC, Shelmerdine SC, Lewis C, et al. Minimally invasive perinatal and pediatric autopsy with laparoscopically assisted tissue sampling: feasibility and experience of the minimal procedure. Ultrasound Obstet Gynecol 2019;54:661–9.

Shelmerdine SC, Hutchinson JC, Ward L, et al. Feasibility of INTACT (INcisionless TAargeted Core Tissue) biopsy procedure for perinatal autopsy. Ultrasound Obstet Gynecol 2020;55:667–75.