Development of a learning program for basic digital image processing

Authors

  • Kanchana Muchan Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok Province 65000 Thailand https://orcid.org/0009-0001-3064-2093
  • Chananchida Surija Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok Province 65000 Thailand https://orcid.org/0009-0007-3049-4506
  • Wayuda Wachum Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok Province 65000 Thailand https://orcid.org/0009-0007-6419-4309
  • Titipong Kaewlek 1Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok Province 65000 Thailand, 2Medical Physics Program, Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok Province 65000 Thailand, 3Interdisciplinary Health and Data Sciences Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok Province 65000 Thailand https://orcid.org/0000-0001-6400-0489

Keywords:

Image processing, Digital image, MATLAB, Development of learning program

Abstract

Background: Currently, radiography has widely shifted from the Film-Screen system to digital systems. This transition necessitates that radiological technologists possess a thorough understanding of digital image management and processing to produce high-quality medical radiographs. MATLAB, a program widely used for image processing, offers a Graphical User Interface (GUI) to facilitate faster and more intuitive use. However, its typical requirement for users to write commands in the Command Window can be confusing for those without a strong foundational knowledge of the program. Objective: This research aims to develop a program that assists in learning image processing commands and transformations, focusing on topics such as the Color Channels Model, Image Filtering, and Image Enhancement. Methods: The program was designed and developed specifically as a digital image processing learning tool. Its functionality was rigorously evaluated by comparing the images and histograms generated by the program with those produced by executing the same commands in MATLAB’s Workspace (Reference Code). To evaluate the program’s effectiveness in enhancing learning, pre- and post-test results were compared among 63 undergraduate students of Radiological Technology. Results: This comparison revealed that the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values were 0 for all commands, indicating identical results. Furthermore, the histograms from both images overlapped perfectly, confirming the accuracy and usability of the program's commands. Conclusion: The results showed that post-test scores were significantly higher than pre-test scores, with a statistically significant difference at a 95% confidence level.

Downloads

Download data is not yet available.

References

MathWorks. What is image enhancement? [Internet]. USA: MathWorks, Inc.; [cited 2024 Mar 9]. Available from: https://www.mathworks.com/discovery/image-enhancement.html

Keim R. Understanding color models used in digital image processing. Technical Articles [Internet]. 2024 Aug 17 [cited 2024 Mar 9]. Available from: https://www.allaboutcircuits.com/technical-articles/understanding-color-models-used-in-digital-image-processing/

Akyol G. What is image enhancement? [Internet]. 2023 [cited 2024 Mar 9]. Available from: https://medium.com/@gokcenazakyol/what-is-image-enhancement-image-processing-3-32a813087e0a

Black Ice Software LLC. HSI color conversion – imaging toolkit feature [Internet]. Florida: Black Ice Software, LLC; [cited 2024 Mar 9]. Available from: https://www.blackice.com/colorspaceHSI.htm

Boyat AK, Joshi BK. Noise models in digital image processing: a review. Signal Image Process. 2015;6(2):63–75.

Deng Q, Chen X. An image processing toolbox based on MATLAB GUI. J Phys Conf Ser. 2021;012137.

Gopinathan S, Kokila R, Thangavel P. Wavelet and FFT based image denoising using non-linear filters. Int J Electr Comput Eng. 2015;5(1):101–108.

Image Processing. Image processing blog [Internet]. 2016 [cited 2024 Feb 18]. Available from: https://imageprocessing443.wordpress.com/blog/

มหาวิทยาลัยศรีปทุม. การออกแบบ Matlab/GUI [อินเทอร์เน็ต]. กรุงเทพฯ: มหาวิทยาลัยศรีปทุม [เข้าถึงเมื่อ 11 ก.พ. 2567] เข้าถึงได้จาก: http://www.dspace.spu.ac.th/bitstream/ 123456789/4680/10/012%E0%B8%9A%E0%B8%97%E0%B8%97%E0%B8%B5%E0%B9%883.pdf.

กนลา เจริญสุข. MATLAB GUI สำหรับการเรียนการสอนวิชาแคลคูลัสเวกเตอร์ เรื่องปริพันธ์สามชั้น. นครปฐม: มหาวิทยาลัยศิลปากร; 2556.

วิวัฒน์ เจริญสุข. การพัฒนาผลสัมฤทธิ์ทางการเรียนวิชาระบบควบคุม โดยใช้โปรแกรมวิเคราะห์ระบบควบคุม MATLAB ของนักศึกษาระดับปริญญาตรี ภาควิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี. ปทุมธานี: มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี; 2555.

Kaewlek T, Sitinwan K, Lueangaroon K, Sansuriyawong W, Pattaweerakul R, Hantrakul T, Chinwatanawongwan B. Development of a web application for stroke diagnosis assistance using deep learning artificial intelligence on computed tomography image. Thai J Rad Tech. 2024;49(1):40-7.

Pairodsantikul P, Laksika Phlangrit L, Wiwatthananon N, Kawvised S, Wongsa P, Pamarapa C. The development of application for general radiography in skull. Thai J Rad Tech. 2023;48(1):60-7.

TJRT9-2025

Downloads

Published

2025-12-26

How to Cite

1.
Muchan K, Surija C, Wachum W, Kaewlek T. Development of a learning program for basic digital image processing. Thai J Rad Tech [internet]. 2025 Dec. 26 [cited 2025 Dec. 30];50(1):79-88. available from: https://he02.tci-thaijo.org/index.php/tjrt/article/view/279180

Issue

Section

Original articles