Investigating Staphylococcus aureus contamination on high-touch surfaces in schools and public spaces
คำสำคัญ:
Staphylococcus aureus, surface contamination, Public Health, high-touch surfaces, Sanitation Practicesบทคัดย่อ
Staphylococcus aureus is a common bacterial pathogen responsible for a wide range of infections and is capable of persisting on high-touch surfaces, thereby posing a risk for community transmission. Although numerous studies have focused on clinical settings, data on S. aureus contamination in public spaces, particularly in developing countries, remain limited. This study aimed to investigate the prevalence and distribution of S. aureus contamination on high-contact surfaces in schools, public transportation systems, and shopping malls in Bangkok, as well as to examine environmental factors influencing contamination levels. A cross-sectional observational study was conducted between May and June 2025. A total of 95 surface swab samples were collected from classrooms, restrooms, ticket machines, elevator buttons, and food courts. Detection of S. aureus was performed using a rapid latex agglutination test kit, with validation through positive and negative controls. Data were analyzed using descriptive statistics, Pearson correlation analysis, and principal component analysis (PCA) to assess associations between contamination levels, surface contact frequency, and site characteristics. The prevalence of S. aureus contamination varied substantially across sites. High contamination rates were observed in classrooms (80.00%), restrooms (44.44%), BTS ticketing areas (42.90%), and one shopping mall (100.00%). In contrast, cafeterias and ferry terminals, despite high contact frequency, exhibited low or no detectable contamination. PCA findings indicated that surface material and cleaning frequency were stronger predictors of contamination than contact frequency alone. This study demonstrates significant S. aureus contamination on high-touch public surfaces, particularly in areas with inadequate sanitation practices. The findings underscore the importance of implementing targeted cleaning protocols, enhancing public hygiene awareness, and strengthening microbial surveillance in urban public environments. Future research should incorporate molecular diagnostic techniques to identify antimicrobial-resistant strains and to evaluate seasonal variations in contamination patterns.
เอกสารอ้างอิง
Bai, F., et al. (2024). Analysis of LFAs and ICAs in bacterial diagnostics. Biosensors and Bioelectronics. https://www.sciencedirect.com/science/article/abs/pii/S1748013224002597
Bai, F., et al. (2024). Cost-effectiveness analysis of LFAs and ICAs. Biosensors and Bioelectronics. https://www.sciencedirect.com/science/article/abs/pii/S1748013224002597
Boerlin, P., Eugster, S., Gaschen, F., Straub, R., & Schawalder, P. (2003). Methods for identifying Staphylococcus aureus in milk samples. Journal of Clinical Microbiology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC149687/
Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629–641. https://doi.org/10.1038/nrmicro2200
Colón, S. (2024, December 19). Staphylococcus aureus: Characteristics, infections, transmission, & treatment. Encyclopaedia Britannica. https://www.britannica.com/science/Staphylococcus-aureus
De S Monteiro, A., Pinto, B. L. S., De M Monteiro, J., Ferreira, R. M., Ribeiro, P. C. S., Bando, S. Y., Marques, S. G., Silva, L. C. N., Neto, W. R. N., Ferreira, G. F., Bomfim, M. R. Q., & Abreu, A. G. (2019). Phylogenetic and molecular profile of Staphylococcus aureus isolated from bloodstream infections in Northeast Brazil. Microorganisms, 7(7), 210. https://doi.org/10.3390/microorganisms7070210
Eady, E. A., & Cove, J. H. (2003). Staphylococcal resistance revisited. Current Opinion in Infectious Diseases. https://journals.lww.com/co-infectiousdiseases/abstract/2003/04000/staphylococcal_resistance_revisited_.7.aspx
Esmail, S., Knauer, M. J., Abdoh, H., Voss, C., Chin-Yee, B., Stogios, P., Seitova, A., Hutchinson, A., Yusifov, F., Skarina, T., Evdokimova, E., Ackloo, S., Lowes, L., Hedley, B. D., Bhayana, V., Chin-Yee, I., & Li, S. S. (2021). Rapid and accurate agglutination-based testing for SARS-CoV-2 antibodies. Cell Reports Methods, 1(2), 100011. https://doi.org/10.1016/j.crmeth.2021.100011
Fang, X., et al. (2019). Cost–benefit analysis of fluorescence-based assays in diagnostics. Sensors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262998/
Fang, X., Zheng, Y., Duan, Y., Liu, Y., & Zhong, W. (2019). Recent advances in design of fluorescence-based assays for high-throughput screening. Analytical Chemistry, 91(1), 482–504. https://doi.org/10.1021/acs.analchem.8b05303
Foster, T. (1996). Staphylococcus. In Medical microbiology. NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK8448/
Fry, E., & Barie, S. (2011). Characteristics of Staphylococcus aureus strains. Surgical Infections. https://www.liebertpub.com/doi/abs/10.1089/sur.2011.068
Hygiena. (2024). Foodproof SL Staphylococcus aureus detection kit: Product instructions. https://www.hygiena.com/documents/69326/foodproof-sl-staphylococcus-aureus-detection-kit-product-instructions.pdf
Ikuta, K. S., Swetschinski, L. R., Aguilar, G. R., Sharara, F., Mestrovic, T., Gray, A. P., … Naghavi, M. (2022). Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 400(10369), 2221–2248. https://doi.org/10.1016/S0140-6736(22)02185-7
Kakkar, S., Gupta, P., Kumar, N., & Kant, K. (2023). Progress in fluorescence biosensing and food safety towards point-of-detection systems. Biosensors, 13(2), 249. https://doi.org/10.3390/bios13020249
Koczula, K. M., et al. (2016). Lateral flow immunoassays in diagnostics: Cost and performance considerations. Analytical and Bioanalytical Chemistry. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986465/
Long, L., Lin, M., Chen, Y., Meng, X., Cui, T., Li, Y., & Guo, X. (2022). Evaluation of loop-mediated isothermal amplification assay for Staphylococcus aureus detection: A systematic review and meta-analysis. Annals of Clinical Microbiology and Antimicrobials, 21(1). https://doi.org/10.1186/s12941-022-00522-6
Lowy, F. D. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 339(8), 520–532. https://doi.org/10.1056/NEJM199808203390806
Nath, P., Mahtaba, K. R., & Ray, A. (2023). Fluorescence-based portable assays for detection of biological and chemical analytes. Sensors, 23(11), 5053. https://doi.org/10.3390/s23115053
Nuntawong, P., Putalun, W., Tanaka, H., Morimoto, S., & Sakamoto, S. (2022). Lateral flow immunoassay for small-molecule detection in phytoproducts: A review. Journal of Natural Medicines, 76(3), 521–545. https://doi.org/10.1007/s11418-022-01605-6
Public Health Agency of Canada. (2012, April 30). Pathogen safety data sheets: Infectious substances – Staphylococcus aureus. Retrieved January 17, 2025, from https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/staphylococcus-aureus.html
Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H., & Morimoto, S. (2018). Enzyme-linked immunosorbent assay for the quantitative and qualitative analysis of plant secondary metabolites. Journal of Natural Medicines, 72(1), 32–42. https://doi.org/10.1007/s11418-017-1144-z
Song, S. H., Lee, H., Lee, H. J., et al. (2023). Twenty-five-year trend change in the etiology of pediatric invasive bacterial infections in Korea, 1996–2020. Journal of Korean Medical Science, 38(16), e127. https://doi.org/10.3346/jkms.2023.38.e127
Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14
Wikipedia contributors. (2023, January 6). Staphylococcus aureus. Wikipedia. https://en.m.wikipedia.org/wiki/Staphylococcus_aureus
Wong, Y., Othman, S., Lau, Y., Radu, S., & Chee, H. (2018). Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of microorganisms. Journal of Applied Microbiology, 124(3), 626–643. https://doi.org/10.1111/jam.13647
ดาวน์โหลด
เผยแพร่แล้ว
รูปแบบการอ้างอิง
ฉบับ
ประเภทบทความ
สัญญาอนุญาต
ลิขสิทธิ์ (c) 2025 คณะสาธารณสุขศาสตร์ มหาวิทยาลัยราชภัฏอุบลราชธานี

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารวารสารวิจัยสาธารณสุขศาสตร์ มหาวิทยาลัยราชภัฏอุบลราชธานี ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใดๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารนี้ ถือเป็นลิขสิทธิ์ของวารสารฯ หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักอักษรณ์จากบรรณาธิการวารสารนี้ก่อนเท่านั้น