The potential of antibacterial proteins for diagnosis and prevention of bovine mastitis

Main Article Content

Pongphol Pongthaisong

Abstract

Antibacterial proteins are the proteins that able to act against bacteria and bovine mastitis pathogens. While the bacteria are invading in mammary gland, antibacterial proteins will eliminate in direct or indirect actions. Firstly, they kill by being the causes of the bacterial cell wall rupture via various mechanisms. Secondly, indirect kill by facilitate the host immune responses. According to literature review, it is indicated that different structural cell wall of the bacteria stimulate different responses of mammary gland including mammary epithelium and white blood cell recognition. This difference resulted in divergent antibacterial protein expression. In addition, several reports showed the relationship of the antibacterial protein amount and the severity of bovine mastitis. Therefore, this review proposes recent evidences indicating the potential of antibacterial proteins for diagnosis and prevention of bovine mastitis. Knowledge about these proteins may be important in developing effective diagnostic approaches and lead to the further mastitis prevention, and finally reduced antibiotic usage.

Article Details

How to Cite
Pongthaisong, P. (2018). The potential of antibacterial proteins for diagnosis and prevention of bovine mastitis. Veterinary Integrative Sciences, 15(2), 79–88. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/145897
Section
Review Article

References

Addis M.F., Tedde, V., Puggioni, G.M., Pisanu, S., Casula, A., Locatelli, C., Rota, N., Bronzo, V., Moroni, P., Uzzau, S., 2016. Evaluation of milk cathelicidin for detection of bovine mastitis. J. Dairy Sci. 99, 8250-8258.

Åkerstedt, M., Waller K.P., Sternesjö, A., 2009.Haptoglobin and serum amyloid A in bulk tank milk in relation to raw milk quality. J. Dairy Res. 76, 483-489.

Almeida, A.M., Bassols,A., Bendixen, E., Bhide, M.,Ceciliani, F., Cristobal, S., Eckersall, P.D., Hollung, K., Lisacek, F., Mazzucchelli, G., McLaughlin, M., Miller, I., Nally, J. E., Plowman, J., Renaut, J.,Rodrigues, P., Roncada, P., Staric J., Turk, R., 2015. Animal board invited review: advances in proteomics for animal and food sciences. Animal. 9, 1–17.

Boehmer, J.L., Bannerman, D.D., Shefcheck, K., Ward, J. L., 2008. Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. J. Dairy Sci. 91, 4206-4218.

Boehmer, J.L., Ward, J.L., Peters, R.R., Shefcheck, K.J., McFarland, M.A., Bannerman, D.D., 2010. Proteomic analysis of the temporal expression of bovine milk proteins during coliform mastitis and label-free relative quantification. J Dairy Sci. 93, 593-603.

Brogden, K.A., 2005. Antimicrobial peptide: Pore formers or metabolic inhibitors in bacteria?. Nature. 3, 238-248.

Crookenden, M.A., Heiser, A., Murray, A., Dukkipati, V.S.R., Kay, J.K., Loor J.J., Meier, S., Mitchell M.D.,Moyes, K.M., Waler, C.G., Roche, J.R., 2016. Parturition in dairy cows temporarily alters the expression of genes in circulating neutrophils. J. Dairy Sci. 99, 6470–6483

Eckersall, P.D., Young, F.J., Nolan, A.M., Knight, C.H., McComb, C., Waterston, M.M., Hogarth, C.J., Scott, E.M., Fitzpatrick, J.L., 2006. Acute phase proteins in bovine milk in an experimental model of Staphylococcus aureus subclinical mastitis. J. Dairy Sci. 89,1488-1501.

Eckersall, P.D., Young, F.J., McComb,C. Hogarth, C.J., Safi, S. , Weber, A., McDonald, T., Nolan, A.M., Fitzpatrick, J.L., 2001. Acute phase proteins in serum and milk from dairy cows with clinical mastitis. Vet. Rec. 148, 35–41.

Fehlbaum, P., Rao, M., Zasloff,M. Anderson, G. M., 2000. An essential amino acid induces epithelial βdefensin expression. Proc. Natl Acad. Sci. USA 97, 12723-12728.

Furukawa, Y., Hayashi, T., Mizuta, M., Ebara, S., Kiku, Y., Ozawa, T., Matsubara, T., Ito, I., Kitamura, D., Mizuta, R., 2011. Increased concentration of high-mobility group box 1 protein in milk is related to the severity of bovine mastitis. Vet. Res. Commun. 35, 47-54.

Gonzalez-Chavez, S. A., Arevalo- Gallegos, S., Rascon- Cruz, Q., 2009. Lactoferrin: structure, function and applications. Intern. J. of Antimicrob. Agents. 33, 301.e1– 301.e8

Guimaraes, J.L.B., Brito, M. A.V.P., Lange, C.C., Silva, M.R., Ribeiro, J.B., Mendonca, L. C., Mendonca, J.F.M. Souza., G.N., 2017. Estimate of the economic impact of mastitis: a case study in a Holstein dairy herd under tropical conditions. Prev. Vet. Med. 142, 46-50.

Hancock, R. E., Diamond, G., 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 9, 402-410. Hancock, R. E., Sahl, H.G., 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551 – 1557.

Hisaeda, K., Koshiishi, T., Watanabe, M., Miyake, H., Yoshimura, Y., Isobe, N., 2016. Change in viable bacterial count during preservation of milk derived from dairy cows with subclinical mastitis and its relationship with antimicrobial components in milk. J. Vet. Med. Sci. 78, 1245– 1250.

Hogarth, C. J., Fitzpatrick, J. L., Nolan, A., Young, M., Pitt, F. J., Eckersall, P.D., 2004. Differential protein composition of bovine whey: A comparison of whey from healthy animals and from those with clinical mastitis. Proteomics. 4, 2094-2100.

HyvÖnen, P., Suojala, L., Orro, T., Haaranen, J., Simola,O., Røntved, C., PyÖrälä, S., 2006. Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental Escherichia coli intramammary infection. Infect. Immun. 74, 6206–6212.

Isobe, N., 2017. Control mechanisms for producing antimicrobial factors in ruminant mammary gland. Anim. Sci. J. doi:10.1111/asj.12808.

Kawai, K., Korematsu, K., Akiyama, K., Okita, M., Yoshimura, Y., Isobe, N., 2015. Dynamics of lingual antimicrobial peptide, lactoferrin concentrations and lactoperoxidase activity in the milk of cows treated for clinical mastitis. Anim. Sci. J. 86,153–158.

Kerr, D.E., Plaut, K., Bramley, A.J., Williamson, C.M., Lax, A.J., Moore, K., Wells, K.D., Wall, R.J., 2001. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat. Biotechnol. 19, 66–70.

Leelahapongsathon, K., Schukken,Y. H. Suriyasathaporn, W., 2014. Quarter, cow, and farm risk factors for intramammary infections with major pathogens relative to minor pathogens in Thai dairy cows. Trop. Anim. Health Prod. 46, 1067–1078.

Levy, O., 2000. Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood. 96, 2664-2672.

Lin, J., Hogan, J., Aslam M., Smith K., 1998: Immunization of cows with ferric enterobatin receptor from coliform bacteria. J. Dairy Sci. 81, 2151–2158.

Merriman, K. E., Kweh, M. F., Powell, J. L., Lippolis, J. D., Nelson, C. D., 2015. Multiple β-defensin genes are upregulated by the vitamin D pathway in cattle. J. Steroid Biochem. Mol. Biol. 154, 120– 129.

Oviedo-Boyso, J., Valdes-Alarcón, J. J., Cajero-Juárez, M., Ochoa- Zarzosa, A., López-Meza, J. E., Bravo-Patiño, A., Baizabal- Aguirre, V.M., 2007. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect. 54, 399–409.

Pongthaisong, P., Katawatin, S., Thamrongyoswittayakul, C., 2015. Cathelicidin responded to Streptococcus agalactiae and associated with the severity of subclinical mastitis. Thai J. Vet. Med. 45, 651-655.

Pongthaisong, P., Katawatin, S., Thamrongyoswittayakul, C., Roytrakul S., 2015. Milk protein profiles in response to Streptococcus agalactiae subclinical mastitis in dairy cows. Anim Sci J. 87, 92-98.

Radostits, O.M., Gay, C.C., Hinchcliff, K.W., Constable, P.D., Done, S.H., 2008. Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs, and goats, 10th ed. Elsevier Saunders, New York. Schroedl, W., Fuerll,B., Reinhold, P., Krueger, M., Schuett. C., 2001. A novel acute phase marker in cattle: lipopolysaccharide binding protein (LBP). J. Endotoxin Res. 7, 49–52.

Síma, P., Trebichavský, I., Sigler, K., 2003. Mammalian antibiotic peptides. Folia Microbiol. (Praha) 48, 123–137.

Smolenski, G., Haines, S., Kwan, F.Y., Bond, J., Farr, V., Davis, S.R., Stelwagen, K., Wheeler, T.T., 2007. Characterisation of host defence proteins in milk using a proteomic approach. J. Proteome Res. 6, 207-215.

Suriyasathaporn, W., 2011. Epidemiology of subclinical mastitis and their antimicrobial susceptibility in small holder dairy farm, Chiang Mai province, Thailand. J. Anim. Vet. Adv. 10, 316-321.