The roles of heat shock proteins 70 in enhancing the productive performances of livestock animals

Main Article Content

Wichaporn Lerdweeraphon

Abstract

Heat shock proteins 70 (HSP70s) are chaperone proteins that assist a wide range of folding processes, including protein aggregation, newly synthesized proteins, signal transduction, and control of the activity of regulatory proteins. Heat shock proteins are present in all the different subcellular compartments of all cell types of prokaryotes and eukaryotes. The elevated of cellular HSP70s synthesis result from exposing to heat stress. Among the HSPs, HSP70s have a significant role in cell thermotolerance and its expression acts as a potential indicator of animal adaptation to hot climate. It can be said that HSP70s may act as a biomarker of heat tolerance in large animals. In addition, HSP70s also have important roles in both male and female reproductive systems, including enhanced sperm fertilizing ability, survival of spermatozoa, embryo development, mainly responsible for mammary cell protection from heat stress, and stimulate immune system responses. Furthermore, HSP70s can be beneficial in the prevention and treatment of various human neurodegenerative diseases and cancer. Therefore, this review proposes recent evidences and hypotheses suggesting that HSP70s may be important roles in enhancing productive performances of livestock animals in the future.

Article Details

How to Cite
Lerdweeraphon, W. (2017). The roles of heat shock proteins 70 in enhancing the productive performances of livestock animals. Veterinary Integrative Sciences, 15(1), 1–14. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/145954
Section
Review Article

References

Asea, A., Kraeft, S.K., Kurt-Jones, E.A., Stevenson, M.A., Chen, L.B., Finberg, R.W., Koo, G.C., Calderwood, S.K., 2000, HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6, 435-442.

Basirico, L., Morera, P., Primi, V., Lacetera, N., Nardone, A., Bernabucci, U., 2011, Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones 16, 441448. Bhat, S., Kumar, P., Kashyap, N., Deshmukh, B., Dige, M.S., Bhushan, B., Chauhan, A., Kumar, A., Singh, G., 2016, Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar ca

ttle. Vet World 9, 113-117. Bobkova, N.V., Evgen'ev, M., Garbuz, D.G., Kulikov, A.M., Morozov, A., Samokhin, A., Velmeshev, D., Medvinskaya, N., Nesterova, I., Pollock, A., Nudler, E., 2015, Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. Proc Natl Acad Sci U S A 112, 16006-16011.

Borges, T.J., Wieten, L., van Herwijnen, M.J., Broere, F., van der Zee, R., Bonorino, C., van Eden, W., 2012, The anti-inflammatory mechanisms of Hsp70. Front Immunol 3, 95. Bukau, B., Deuerling, E., Pfund, C., Craig, E.A., 2000, Getting newly synthesized proteins into shape. Cell 101, 119-122.

Cagney, G., Amiri, S., Premawaradena, T., Lindo, M., Emili, A., 2003, In silico proteome analysis to facilitate proteomics experiments using mass spectrometry. Proteome Sci 1, 5.

Chaudhary, S.S., Singh, V.K., Upadhyay, R.C., Puri, G., Odedara, A.B., Patel, P.A., 2015, Evaluation of physiological and biochemical responses in different seasons in Surti buffaloes. Vet World 8, 727-731.

Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., Nardai, G., 1998, The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79, 129-168.

de Oliveira, A.T., Lopes, R.F., Rodrigues, J.L., 2005, Gene expression and developmental competence of bovine embryos produced in vitro under varying embryo density conditions. Theriogenology 64, 1559-1572.

Dobson, H., Smith, R.F., 2000, What is stress, and how does it affect reproduction? Anim Reprod Sci 60-61, 743-752.

Elliott, R.M., Lloyd, R.E., Fazeli, A., Sostaric, E., Georgiou, A.S., Satake, N., Watson, P.F., Holt, W.V., 2009, Effects of HSPA8, an evolutionarily conserved oviductal protein, on boar and bull spermatozoa. Reproduction 137, 191-203.

Ellis, J., 1987, Proteins as molecular chaperones. Nature 328, 378-379.

Elsner, L., Flugge, P.F., Lozano, J., Muppala, V., EizVesper, B., Demiroglu, S.Y., Malzahn, D., Herrmann, T., Brunner, E., Bickeboller, H., Multhoff, G., Walter, L., Dressel, R., 2010, The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. J Cell Mol Med 14, 9921002.

Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T., Prives, C., 2001, A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21, 1874-1887.

Grigore, M., Indrei, A., 2001, The role of heat shock proteins in reproduction. Rev Med Chir Soc Med Nat Iasi 105, 674-676.

Guzhova, I.V., Margulis, B.A., 2016, HSP70-based anticancer immunotherapy. Hum Vaccin Immunother 12, 2529-2535.

Hansen, P.J., 2004, Physiological and cellular adaptations of zebu cattle to thermal stress. Anim Reprod Sci 82-83, 349-360.

Hansen, P.J., 2014, Genetic variation in resistance of the preimplantation bovine embryo to heat shock. Reprod Fertil Dev 27, 22-30.

Hartl, F.U., 1996, Molecular chaperones in cellular protein folding. Nature 381, 571-579.

Hartl, F.U., Hayer-Hartl, M., 2002, Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858.

Haslbeck , M., 2002, sHsps and their role in the chaperone network. Cell Mol Life Sci 59, 1649-1657.

Horvath, I., Multhoff, G., Sonnleitner, A., Vigh, L., 2008, Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778, 1653-1664.

Hu, H., Zhang, Y., Zheng, N., Cheng, J., Wang, J., 2016, The effect of heat stress on gene expression and synthesis of heat-shock and milk proteins in bovine mammary epithelial cells. Anim Sci J 87, 84-91.

Huang, S.Y., Kuo, Y.H., Lee, Y.P., Tsou, H.L., Lin, E.C., Ju, C.C., Lee, W.C., 2000, Association of heat shock protein 70 with semen quality in boars. Anim Reprod Sci 63, 231-240.

Jego, G., Hazoume, A., Seigneuric, R., Garrido, C., 2013, Targeting heat shock proteins in cancer. Cancer Lett 332, 275-285.

Kapila, N., Sharma, A., Kishore, A., Sodhi, M., Tripathi, P.K., Mohanty, A.K., Mukesh, M., 2016, Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis). PLoS One 11, e0157237.

Kregel, K.C., 2002, Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol (1985) 92, 2177-2186.

Krueger, A.M., Armstrong, J.N., Plumier, J., Robertson, H.A., Currie, R.W., 1999, Cell specific expression of Hsp70 in neurons and glia of the rat hippocampus after hyperthermia and kainic acid-induced seizure activity. Brain Res Mol Brain Res 71, 265-278.

Kumar, S., Stokes, J., 3rd, Singh, U.P., Scissum Gunn, K., Acharya, A., Manne, U., Mishra, M., 2016, Targeting Hsp70: A possible therapy for cancer. Cancer Lett 374, 156-166.

Liu, Y., Wang, X.C., Hu, D., Huang, S.R., Li, Q.S., Li, Z., Qu, Y., 2016, Heat shock protein 70 protects PC12 cells against ischemia hypoxia/reoxygenation by maintaining intracellular Ca(2+) homeostasis. Neural Regen Res 11, 1134-1140.

Lloyd, R.E., Elliott, R.M., Fazeli, A., Watson, P.F., Holt, W.V., 2009, Effects of oviductal proteins, including heat shock 70 kDa protein 8, on survival of ram spermatozoa over 48 h in vitro. Reprod Fertil Dev 21, 408-418.

Manjari, R., Yadav, M., Ramesh, K., Uniyal, S., Rastogi, S.K., Sejian, V., Hyder, I., 2015, HSP70 as a marker of heat and humidity stress in Tarai buffalo. Trop Anim Health Prod 47, 111-116.

Moein-Vaziri, N., Phillips, I., Smith, S., Alminana, C., Maside, C., Gil, M.A., Roca, J., Martinez, E.A., Holt, W.V., Pockley, A.G., Fazeli, A., 2014, Heatshock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity. Reproduction 147, 719-732.

Parsell, D.A., Taulien, J., Lindquist, S., 1993, The role of heat-shock proteins in thermotolerance. Philos Trans R Soc Lond B Biol Sci 339, 279-285; discussion 285-276.

Paula-Lopes, F.F., Chase, C.C., Jr., Al-Katanani, Y.M., Krininger, C.E., 3rd, Rivera, R.M., Tekin, S., Majewski, A.C., Ocon, O.M., Olson, T.A., Hansen, P.J., 2003, Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction 125, 285-294.

Quintana, F.J., Cohen, I.R., 2005, Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 175, 2777-2782.

Ravagnolo, O., Misztal, I., Hoogenboom, G., 2000, Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function. J Dairy Sci 83, 2120-2125.

Robert, J., 2003, Evolution of heat shock protein and immunity. Dev Comp Immunol 27, 449-464.

Sadeesh, E.M., Sikka, P., Balhara, A.K., Balhara, S., 2016, Developmental competence and expression profile of genes in buffalo (Bubalus bubalis) oocytes and embryos collected under different environmental stress. Cytotechnology 68, 22712285.

Sartori, R., Haughian, J.M., Shaver, R.D., Rosa, G.J., Wiltbank, M.C., 2004, Comparison of ovarian function and circulating steroids in estrous cycles of Holstein heifers and lactating cows. J Dairy Sci 87, 905-920.

Sejerkilde, M., Sorensen, J.G., Loeschcke, V., 2003, Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J Insect Physiol 49, 719-726.

Shevchenko, M.A., Troyanova, N.I., Servuli, E.A., Bolkhovitina, E.L., Fedorina, A.S., Sapozhnikov, A.M., 2016, Study of Immunomodulatory Effects of Extracellular HSP70 in a Mouse Model of Allergic Airway Inflammation. Biochemistry (Mosc) 81, 1384-1395.

Shinder, G.A., Lacourse, M.C., Minotti, S., Durham, H.D., 2001, Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J Biol Chem 276, 12791-12796.

Sirotkin, A.V., Bauer, M., 2011, Heat shock proteins in porcine ovary: synthesis, accumulation and regulation by stress and hormones. Cell Stress Chaperones 16, 379-387.

Spinaci, M., Volpe, S., Bernardini, C., De Ambrogi, M., Tamanini, C., Seren, E., Galeati, G., 2005, Immunolocalization of heat shock protein 70 (Hsp 70) in boar spermatozoa and its role during fertilization. Mol Reprod Dev 72, 534-541.

Todryk, S.M., Gough, M.J., Pockley, A.G., 2003, Facets of heat shock protein 70 show immunotherapeutic potential. Immunology 110, 1-9.

Wang, X., Chen, M., Zhou, J., Zhang, X., 2014, HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int J Oncol 45, 18-30.

Wang, X.P., Wang, Q.X., Lin, H.P., Xu, B., Zhao, Q., Chen, K., 2016, Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity. Oncotarget 7, 71274-71284.

Wegner, K., Lambertz, C., Das, G., Reiner, G., Gauly, M., 2014, Climatic effects on sow fertility and piglet survival under influence of a moderate climate. Animal 8, 1526-1533.

Wegner, K., Lambertz, C., Das, G., Reiner, G., Gauly, M., 2016, Effects of temperature and temperaturehumidity index on the reproductive performance of sows during summer months under a temperate climate. Anim Sci J 87, 1334-1339.

Yurinskaya, M., Zatsepina, O.G., Vinokurov, M.G., Bobkova, N.V., Garbuz, D.G., Morozov, A.V., Kulikova, D.A., Mitkevich, V.A., Makarov, A.A., Funikov, S.Y., Evgen'ev, M.B., 2015, The Fate of Exogenous Human HSP70 Introduced into Animal Cells by Different Means. Curr Drug Deliv 12, 524-532.

Zylicz, M., King, F.W., Wawrzynow, A., 2001, Hsp70 interactions with the p53 tumour suppressor protein. EMBO J 20, 4634-4638.