Cartilage degradation
Main Article Content
Abstract
Articular cartilage is hyalin cartilage covering the two ends of bones in diathrodial joints. It can resist compression and redistribute load of the joints. The tissue composed of chondrocytes embedded within extracellular matrix which majorly composed of collagen, proteoglycan, hyaluronan and aggrecan. Excessive catabolism within the cartilage tissue causes cartilage degradation. Proinfl ammatory cytokines such as interleukin-1β and tumor necrosis factor alpha (TNF-α) trigger the chondrocytes to produce matrix degraded enzymes such as matrix metalloproteinases, collagenases, and aggrecanases leading to cartilage erosion, fi ssure, denulation and degradation. The purpose of this article is to review biochemical changes, pathology, and diseases association with cartilage degradation for further studies of osteoarthritis treatment.
Article Details
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Andreas, K., Lübke, C., Häupl, T., Dehne, T., Morawietz, L., Ringe, J., … Sittinger, M. (2008). Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Research & Therapy, 10(1), R9. Berenbaum, F. (2013). Osteoarthritis as an infl ammatory disease (osteoarthritis is not osteoarthrosis). Osteoarthritis and Cartilage, 21(1), 16–21.
Cook, J. L., Kuroki, K., Visco, D., Pelletier, J. P., Schulz, L., & Lafeber, F. P. (2010). The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the dog. Osteoarthritis Cartilage, 18 Suppl 3, S66–79.
Das, S. K., & Farooqi, A. (2008). Osteoarthritis. Best Practice & Research Clinical Rheumatology, 22(4), 657–675.
Fosang, A. J., & Beier, F. (2011). Emerging Frontiers in cartilage and chondrocyte biology. Best Practice & Research Clinical Rheumatology, 25(6), 751–766.
Gargiulo, S., Gamba, P., Poli, G., & Leonarduzzi, G. (2014). Metalloproteinases and Metalloproteinase Inhibitors in Age-Related Diseases. Current Pharmaceutical Design, 20(18):2993-3018. Goldring, S. R., & Goldring, M. B. (2004). The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clinical Orthopaedics and Related Research, (427 Suppl), S27–36.
Grenier, S., Bhargava, M. M., & Torzilli, P. A. (2014). An in vitro model for the pathological degradation of articular cartilage in osteoarthritis. Journal of Biomechanics, 47(3), 645–652.
Guilak, F., Fermor, B., Keefe, F. J., Kraus, V. B., Olson, S. A., Pisetsky, D. S., … Weinberg, J. B. (2004). The role of biomechanics and infl ammation in cartilage injury and repair. Clinical Orthopaedics and Related Research, (423), 17–26.
Huang, L.-J., & Chen, W.-P. (2015). Astaxanthin ameliorates cartilage damage in experimental osteoarthritis. Modern Rheumatology, 1–19.
Johnson, G. B., Brunn, G. J., Kodaira, Y., & Platt, J. L. (2002). Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. Journal of Immunology (Baltimore, Md.: 1950), 168(10), 5233–5239.
Kim, Y. O., Hong, S. J., & Yim, S.-V. (2010). The effi cacy of shikonin on cartilage protection in a mouse model of rheumatoid arthritis. The Korean Journal of Physiology & Pharmacology: Offi cial Journal of the Korean Physiological Society and the Korean Society of Pharmacology, 14(4), 199–204.
Koo, B.-H., Longpré, J.-M., Somerville, R. P. T., Alexander, J. P., Leduc, R., & Apte, S. S. (2006). Cell-surface processing of pro-ADAMTS9 by furin. The Journal of Biological Chemistry, 281(18), 12485–12494.
Kraus, V. B., Huebner, J. L., DeGroot, J., & Bendele, A. (2010). The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig. Osteoarthritis and Cartilage, 18, Supplement 3, S35–S52.
Lee, A. N., Beck, C. E., & Hall, M. (2008). Rheumatoid factor and anti-CCP autoantibodies in rheumatoid arthritis: a review. Clinical Laboratory Science: Journal of the American Society for Medical Technology, 21(1), 15–18.
Lee, J. H., Shehzad, O., Ko, S. K., Kim, Y. S., & Kim, H. P. (2015). Matrix metalloproteinase-13 downregulation and potential cartilage protective action of the Korean Red Ginseng preparation. Journal of Ginseng Research, 39(1), 54–60.
Little, C. B., Meeker, C. T., Golub, S. B., Lawlor, K. E., Farmer, P. J., Smith, S. M., & Fosang, A. J. (2007). Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. The Journal of Clinical Investigation, 117(6), 1627–1636.
Little, C. B., Smith, M. M., Cake, M. A., Read, R. A., Murphy, M. J., & Barry, F. P. (2010). The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in sheep and goats. Osteoarthritis and Cartilage, 18, Supplement 3, S80–S92.
McIlwraith, C. W., Frisbie, D. D., Kawcak, C. E., Fuller, C. J., Hurtig, M., & Cruz, A. (2010). The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the horse. Osteoarthritis and Cartilage, 18, Supplement 3, S93–S105.
Milner, J. M., Patel, A., & Rowan, A. D. (2008). Emerging roles of serine proteinases in tissue turnover in arthritis. Arthritis and Rheumatism, 58(12), 3644–3656.
Moskowitz, R. W. (2006). Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis and Cartilage / OARS, Osteoarthritis Research Society, 14(1), 1–2.
Okamura, Y., Watari, M., Jerud, E. S., Young, D. W., Ishizaka, S. T., Rose, J., … Strauss, J. F., 3rd. (2001). The extra domain A of fi bronectin activates Toll-like receptor 4. The Journal of Biological Chemistry, 276(13), 10229–10233.
Sun, H. B. (2010). Mechanical loading, cartilage degradation, and arthritis. Annals of the New York Academy of Sciences, 1211, 37–50.
Tortorella, M. D., Arner, E. C., Hills, R., Gormley, J., Fok, K., Pegg, L., … Malfait, A.-M. (2005). ADAMTS-4 (aggrecanase-1): N-terminal activation mechanisms. Archives of Biochemistry and Biophysics, 444(1), 34–44.
Wang, L., Gai, P., Xu, R., Zheng, Y., Lv, S., Li, Y., & Liu, S. (2015). Shikonin protects chondrocytes from interleukin-1beta-induced apoptosis by regulating PI3K/Akt signaling pathway. International Journal of Clinical and Experimental Pathology, 8(1), 298–308.