Role of fibulin-3 in extracellular matrix production

Main Article Content

Tanita Pitakarnnop
Burin Boonsri
Waranee Pradit
Kittisak Buddhachat
Korakot Nganvongpanit

Abstract

Chondrocyte is the only cell type in cartilage bone. Normally, anabolic and catabolic activities of chondrocytes are regulated by hormones and proteins. In addition to the serve change in the extracellular matrix, chondrocyte cells also display abnormalities such as osteoarthritic cartilage. In review paper, focuses on fi bulin-3 which is a protein that hasan important role in regulation about differentiation of chondrocyte. When the overexpression of fi bulin-3, it affect to inhibit chondrocyte differentiation. Therefore, fi bulin-3 can be used to biomarker in osteoarthritic cartilage.

Article Details

How to Cite
Pitakarnnop, T., Boonsri, B., Pradit, W., Buddhachat, K., & Nganvongpanit, K. (2014). Role of fibulin-3 in extracellular matrix production. Veterinary Integrative Sciences, 12(3), 201–207. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/146510
Section
Review Article

References

Argraves, W. S., Greene, L. M., Cooley, M. A., & Gallagher, W. M. (2003). Fibulins: physiological and disease perspectives. EMBO Reports, 4(12), 1127-1131.

Bussiere, C. T., Wright, G. M., & DeMont, M. E. (2006). The mechanical function and structure of aortic microfi brils in the lobster Homarus americanus. Comparative Biochemistry and Physiology Part A : Molecular & Integrative Physiology, 143(4), 417-428.

de Vega, S., Iwamoto, T., Nakamura, T., Hozumi, K., McKnight, D. A., Fisher, L. W., . . . Yamada, Y. (2007). TM14 is a new member of the fi bulin family (fi bulin-7) that interacts with extracellular matrix molecules and is active for cell binding. Journal of Biological Chemistry, 282(42), 30878-30888.

de Vega, S., Iwamoto, T., & Yamada, Y. (2009). Fibulins: multiple roles in matrix structures and tissue functions. Cellular and Molecular Life Sciences, 66(11-12), 1890-1902.

Faury, G. (2001). Function-structure relationship of elastic arteries in evolution: from microfi brils to elastin and elastic fi bres. Pathologic Biologie (Paris), 49(4), 310-325.

Gallagher, W. M., Argentini, M., Sierra, V., Bracco, L., Debussche, L., & Conseiller, E. (1999). MBP1: a novel mutant p53-specifi c protein partner with oncogenic properties. Oncogene, 18(24), 3608-3616.

Giltay, R., Timpl, R., & Kostka, G. (1999). Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fi bulin-3 and fi bulin-4. Matrix Biology, 18(5), 469-480.

Heine, H., Delude, R. L., Monks, B. G., Espevik, T., & Golenbock, D. T. (1999). Bacterial lipopolysaccharide induces expression of the stress response genes hop and H411. Journal of Biological Chemistry, 274(30), 21049-21055.

Kielty, C. M., Sherratt, M. J., & Shuttleworth, C. A. (2002). Elastic fi bres. Journal of Cell Science, 115(Pt 14), 2817-2828.

Kowal, R. C., Richardson, J. A., Miano, J. M., & Olson, E. N. (1999). EVEC, a novel epidermal growth factor-like repeat-containing protein upregulated in embryonic and diseased adult vasculature. Circulation Research, 84(10), 1166-1176.

Lecka-Czernik, B., Lumpkin, C. K., & Goldstein, S. (1995). An overexpressed gene transcript in senescent and quiescent human fi broblasts encoding a novel protein in the epidermal growth factor-like repeat family stimulates DNA synthesis. Molecular and Cellular Biology, 15(1), 120-128.

Nakamura, T., Ruiz-Lozano, P., Lindner, V., Yabe, D., Taniwaki, M., Furukawa, Y., . . . Honjo, T. (1999). DANCE, a novel secreted RGD protein expressed in developing, atherosclerotic, and balloon injured arteries. Journal of Biological Chemistry, 274(32), 22476-22483.

Putnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A., . . . Rokhsar, D. S. (2007). Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science, 317(5834), 86-94.

Reber-Müller, S., Spissinger, T., Schuchert, P., Spring, J., & Schmid, V. (1995). An extracellular matrix protein of jellyfi sh homologous to mammalian fi brillins forms different fi brils depending on the life stage of the animal. Developmental Biology, 169(2), 662-672.

Shadwick, R. E. (1999). Mechanical design in arteries. J Exp Biol, 202(Pt 23), 3305-3313.

Shukunami, C., Shigeno, C., Atsumi, T., Ishizeki, K., Suzuki, F., & Hiraki, Y. (1996). Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH) /PTH-related peptide receptor. Journal of Cell Biology, 133(2), 457-468.


Timpl, R., Sasaki, T., Kostka, G., & Chu, M.-L. (2003). Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol, 4(6), 479-489.

Wagenseil, J. E., & Mecham, R. P. (2007). New insights into elastic fi ber assembly. Birth Defects Research Part C : Embryo Today : reviews, 81(4), 229-240.

Wakabayashi, T., Matsumine, A., Nakazora, S., Hasegawa, M., Iino, T., Ota, H., . . . Uchida, A. (2010). Fibulin-3 negatively regulates chondrocyte differentiation. Biochemical and Biophysical Research Communications, 391(1), 1116-1121.

Yanagisawa, H., & Davis, E. C. (2010). Unraveling the mechanism of elastic fi ber assembly: The roles of short fi bulins. The International Journal of Biochemistry & Cell Biology, 42(7), 1084-1093.

Yanagisawa, H., Schluterman, M. K., & Brekken, R. A. (2009). Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. Journal of Cell Communication and Signaling, 3(3-4), 337-347.