Cartilage metabolism and osteoarthritis treatment

Main Article Content

Kittisak Buddhachat
Waranee Pradit
Tanita Pitakarnnop
Burin Boonsri
Korakot Nganvongpanit

Abstract

Cartilage tissues are importantly responsible for mechanical force protection at the joints from movements. The matrix of cartilage consists of collagen network. The matrix proteins such as type II collagen and proteoglycan are synthesized in cartilage tissues as the structure protein to support the mechanical loading. The synthesis of these matrix proteins by chondrocytes are stimulated by anabolic factors such as insulin-like growth factor-1 (IGF-1), bone morphogenetic proteins (BMPs), osteogenic protein-I (OP-1 or BMP-7), cartilage-derived morphogenetic proteins (CDMPs), TGF-β and fi broblast growth factor (FGFs). However, the continuity of accumulative stress of mechanical force and also aging result in cartilage matrix degradation because the proinfl ammatory cytokines such as interleukin-1β, tumor necrosis factor (TNF)-α and interleukin-6 trigger the chondrocytes to produce matrix-degraded enzymes. Hence, metabolism balanceis a critical process to prevent cartilage pathogenesis, especially, osteoarthritis (OA). Currently, the disease modifying anti-osteoarthritis drug (DMOAD) such as diacerein, glucosamine N-acetylglucosamine andgreen tea polyphenols have been developed to reduce adverse side effects for osteoarthritis therapy. Potentially, infl ammatory inhibition through adenosine (A2A) receptor could be the next effi cient targetof OA treatment.

Article Details

How to Cite
Buddhachat, K., Pradit, W., Pitakarnnop, T., Boonsri, B., & Nganvongpanit, K. (2014). Cartilage metabolism and osteoarthritis treatment. Veterinary Integrative Sciences, 12(3), 209–224. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/146517
Section
Review Article

References

Agarwal, S., Deschner, J., Long, P., Verma, A., Hofman, C., Evans, C. H., & Piesco, N. (2004). Role of NF-kappaB transcription factors in antiinfl ammatory and proinfl ammatory actions of mechanical signals. Arthritis & Rheumatology, 50(11), 3541-3548.

Aigner, T., Bartnik, E., Sohler, F., & Zimmer, R. (2004). Functional genomics of osteoarthritis: on the way to evaluate disease hypotheses. Clinical Orthopaedics and Related Research, S138-143.

Aigner, T., Gebhard, P. M., Schmid, E., Bau, B., Harley, V., & Poschl, E. (2003). SOX9 expression does not correlate with type II collagen expression in adult articular chondrocytes. Matrix Biology, 22(4), 363-372.

Au, A., Polotsky, A., Krzyminski, K., Gutowska, A., Hungerford, D. S., & Frondoza, C. G. (2004). Evaluation of thermoreversible polymers containing fi broblast growth factor 9 (FGF-9) for chondrocyte culture. Journal of Biomedical Material Research Part A, 69(2), 367-372.

Barksby, H. E., Hui, W., Wappler, I., Peters, H. H., Milner, J. M., Richards, C. D., . . . Rowan, A. D. (2006). Interleukin-1 in combination with oncostatin M up-regulates multiple genes in chondrocytes: implications for cartilage destruction and repair. Arthritis & Rheumatoloty, 54(2), 540-550.

Berenbaum, F. (2004). Signaling transduction: target in osteoarthritis. Current Opinion in Rheumatology, 16(5), 616-622.

Blaney Davidson, E. N., Scharstuhl, A., Vitters, E. L., van der Kraan, P. M., & van den Berg, W. B. (2005). Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Research & Therapy, 7(6), R1338-1347.

Bobacz, K., Gruber, R., Soleiman, A., Erlacher, L., Smolen, J. S., & Graninger, W. B. (2003). Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Arthritis & Rheumatology, 48(9), 2501-2508.

Borzì, R. M., Mazzetti, I., Marcu, K. B., & Facchini, A. (2004). Chemokines in cartilage degradation. Clinical Orthopaedics and Related Research (427 Suppl), S53-61.

Boyle, D. L., Kowaluk, E. A., Jarvis, M. F., Lee, C. H., Bhagwat, S. S., Williams, M., & Firestein, G. S. (2001). Anti-infl ammatory effects of ABT-702, a novel non-nucleoside adenosine kinase inhibitor, in rat adjuvant arthritis. The Journal of Pharmacology and Experimental Therapeutics, 296(2), 495-500.

Boyle, D. L., Sajjadi, F. G., & Firestein, G. S. (1996). Inhibition of synoviocyte collagenase gene expression by adenosine receptor stimulation. Arthritis & Rheumatology, 39(6), 923-930.

Braddock, M., & Quinn, A. (2004). Targeting IL-1 in infl ammatory disease: new opportunities for therapeutic intervention. Nature Reviews Drug Discovery, 3(4), 330-339.

Brandt, K. D., & Mazzuca, S. A. (2005). Lessons learned from nine clinical trials of disease-modifying osteoarthritis drugs. Arthritis & Rheumatology, 52(11), 3349-3359.

Brandt, K. D., Mazzuca, S. A., Katz, B. P., Lane, K. A., Buckwalter, K. A., Yocum, D. E., . . . Heck, L. W. (2005). Effects of doxycycline on progression of osteoarthritis: results of a randomized, placebo-controlled, double-blind trial. Arthritis & Rheumatology, 52(7), 2015-2025.

Campo, G. M., Avenoso, A., D'Ascola, A., Prestipino, V., Scuruchi, M., Nastasi, G., . . . Campo, S. (2012). The stimulation of adenosine 2A receptor reduces infl ammatory response in mouse articular chondrocytes treated with hyaluronan oligosaccharides. Matrix Biology, 31(6), 338-351.

Chevalier, X., Giraudeau, B., Conrozier, T., Marliere, J., Kiefer, P., & Goupille, P. (2005). Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. The Journal of Rheumatology, 32(7), 1317-1323.

Chubinskaya, S., Kumar, B., Merrihew, C., Heretis, K., Rueger, D. C., & Kuettner, K. E. (2002). Age-related changes in cartilage endogenous osteogenic protein-1 (OP-1). ABBS Acta Biochimica et Biophysica Sinica, 1588(2), 126-134.

Chubinskaya, S., Otten, L., Soeder, S., Borgia, J. A., Aigner, T., Rueger, D. C., & Loeser, R. F. (2011). Regulation of chondrocyte gene expression by osteogenic protein-1. Arthritis Research & Therapy, 13(2), R55.

Clegg, D. O., Reda, D. J., Harris, C. L., Klein, M. A., O'Dell, J. R., Hooper, M. M., . . . Williams, H. J. (2006). Glucosamine, chondroitin sulfate, and the two
in combination for painful knee osteoarthritis. The new england Journal of Medicine, 354(8), 795-808.

de Ceuninck, F., Caliez, A., Dassencourt, L., Anract, P., & Renard, P. (2004). Pharmacological disruption of insulin-like growth factor 1 binding to IGF-binding proteins restores anabolic responses in human osteoarthritic chondrocytes. Arthritis Research & Therapy, 6(5), R393-403.

de Hooge, A. S. K., van de Loo, F. A. J., Bennink, M. B., Arntz, O. J., de Hooge, P., & van den Berg, W. B. (2005). Male IL-6 gene knock out mice developed more advanced osteoarthritis upon aging. Osteoarthritis and Cartilage, 13(1), 66-73.

Denko, C. W., & Malemud, C. J. (2005). Role of the growth hormone/insulin-like growth factor-1 paracrine axis in rheumatic diseases. Seminars in Arthritis and Rheumatism, 35(1), 24-34.

Ellsworth, J. L., Berry, J., Bukowski, T., Claus, J., Feldhaus, A., Holderman, S., . . . Hughes, S. D. (2002). Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis and Cartilage, 10(4), 308-320.

Evans, C. H. (2005). Novel biological approaches to the intra-articular treatment of osteoarthritis. BioDrugs, 19(6), 355-362. Fanning, P. J., Emkey, G., Smith, R. J., Grodzinsky, A. J., Szasz, N., & Trippel, S. B. (2003). Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. The Journal of Biological Chemistry, 278(51), 50940-50948.

Fitzgerald, J. B., Jin, M., Dean, D., Wood, D. J., Zheng, M. H., & Grodzinsky, A. J. (2004). Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. The Journal fof Biological Chemistry, 279(19), 19502-19511.

Frisbie, D. D., Ghivizzani, S. C., Robbins, P. D., Evans, C. H., & McIlwraith, C. W. (2002). Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Therapy, 9(1), 12-20.

Fukui, N., Zhu, Y., Maloney, W. J., Clohisy, J., & Sandell, L. J. (2003). Stimulation of BMP-2 expression by pro-infl ammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. The Journal of Bone & Joint Surgery, 85-A Suppl 3, 59-66.

Glasson, S. ( 2005). Identifi cation of targets through histologic evaluation of osteoarthritis in knock out mice. Osteoarthritis and Cartilage, 13 (Suppl A)(S3).

Goldring, M. B. (2006). Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Practice & Research Clinical Rheumatology, 20(5), 1003-1025.

Goldring, M. B., & Berenbaum, F. (2004). The regulation of chondrocyte function by proinfl ammatory mediators: prostaglandins and nitric oxide. Clinical Orthopaedics and Related Research (427 Suppl), S37-46.

Goldring, S. R., & Goldring, M. B. (2004). The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clinical Orthopaedics and Related Research (427 Suppl), S27-36.

Gruber, R., Mayer, C., Bobacz, K., Krauth, M. T., Graninger, W., Luyten, F. P., & Erlacher, L. (2001). Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells. Endocrinology, 142(5), 2087-2094.

Gründer, T., Gaissmaier, C., Fritz, J., Stoop, R., Hortschansky, P., Mollenhauer, J., & Aicher, W. K. (2004). Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis and Cartilage, 12(7), 559-567.

Guilak, F., Fermor, B., Keefe, F. J., Kraus, V. B., Olson, S. A., Pisetsky, D. S., . . . Weinberg, J. B. (2004). The role of biomechanics and infl ammation in cartilage injury and repair. Clinical
Orthopaedics and Related Research (423), 17-26.

Hammaker, D., Sweeney, S., & Firestein, G. S. (2003). Signal transduction networks in rheumatoid arthritis. Annals of the Rheumatic Diseases the Eular journal, 62 Suppl 2, ii86-89.

Hermansson, M., Sawaji, Y., Bolton, M., Alexander, S., Wallace, A., Begum, S., . . . Saklatvala, J. (2004). Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaA (activin A), a regulatory molecule for chondrocytes. The Journal of Biological chemistry, 279(42), 43514-43521.

Homandberg, G. A. (2001). Cartilage damage by matrix degradation products: fi bronectin fragments. Clin Orthop Relat Res(391 Suppl), S100-107.

Iwanaga, H., Matsumoto, T., Enomoto, H., Okano, K., Hishikawa, Y., Shindo, H., & Koji, T. (2005). Enhanced expression of insulin-like growth factor-binding proteins in human osteoarthritic cartilage detected by immunohistochemistry and in situ hybridization. Osteoarthritis and Cartilage, 13(5), 439-448.

Johnston, S., & Budsberg S.C. (1997). Nonsteroidal anti-infl ammatory drugs and corticosteroids for the management of canine osteoarthritis. Vet Clin North Am: Journal of Small Animal Practice, 27(4), 841-862.

Kaiser, M., Haag, J., Söder, S., Bau, B., & Aigner, T. (2004). Bone morphogenetic protein and transforming growth factor beta inhibitory Smads 6 and 7 are expressed in human adult normal and osteoarthritic cartilage in vivo and are differ entially regulated in vitro by interleukin-1beta. Arthritis & Rheumatology, 50(11), 3535-3540.

Koolpe, M., Pearson, D., & Benton, H. P. (1999). Expression of both P1 and P2 purine receptor genes by human articular chondrocytes and profi le of ligand-mediated prostaglandin E2 release. Arthritis & Rheumatology, 42(2), 258-267.

Loeser, R. F., Chubinskaya, S., Pacione, C., & Im, H.-J. (2005). Basic fi broblast growth factor inhibits the anabolic activity of insulin-like growth factor 1 and osteogenic protein 1 in adult human articular chondrocytes. Arthritis & Rheumatology, 52(12), 3910-3917.

Loeser, R. F., Jr. (2004). Aging cartilage and osteoarthritis--what's the link? The Science of Aging Knowledge Environment (SAGE KE), 2004(29), pe31. Loeser, R. F., Pacione, C. A., & Chubinskaya, S. (2003). The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis & Rheumtology, 48(8), 2188-2196.

Maddison, J.E., & Johnston, K.A. (2007). Nonsteroidal anti-infl ammatory drugs and chondroprotective agents. In: Maddison, J,E., Page, S.W., Church, D. editors. Small animal clinical pharmacology. London: Saunders, 71-92.

Majumdar, M. K., Wang, E., & Morris, E. A. (2001). BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. Journal of Cellular Physiology, 189(3), 275-284.

Malemud, C. J. (2004a). Cytokines as therapeutic targets for osteoarthritis. BioDrugs, 18(1), 23-35.

Malemud, C. J. (2004b). Protein kinases in chondrocyte signaling and osteoarthritis. Clinical Orthopaedics and Related Research (427 Suppl), S145-151.

McAlindon, T. E., & Biggee, B. A. (2005). Nutritional factors and osteoarthritis: recent developments. Current Opinion in Rheumatology, 17(5), 647-652.

McIntyre, K. W., Shuster, D. J., Gillooly, K. M., Dambach, D. M., Pattoli, M. A., Lu, P., . . . Burke, J. R. (2003). A highly selective inhibitor of I kappa B kinase, BMS-345541, blocks both joint infl ammation and destruction in collagen-induced arthritis in mice. Arthritis & Rheumtology, 48(9), 2652-2659.


Mistry, D., Chambers, M. G., & Mason, R. M. (2006). The role of adenosine in chondrocyte death in murine osteoarthritis and in a murine chondrocyte cell line. Osteoarthritis and Cartilage, 14(5), 486-495.

Moore, E. E., Bendele, A. M., Thompson, D. L., Littau, A., Waggie, K. S., Reardon, B., & Ellsworth, J. L. (2005). Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis and Cartilage, 13(7), 623-631.

Moulharat, N., Lesur, C., Thomas, M., Rolland-Valognes, G., Pastoureau, P., Anract, P., . . . Sabatini, M. (2004). Effects of transforming growth factor-beta on aggrecanase production and proteoglycan degradation by human chondrocytes in vitro. Osteoarthritis and Cartilage, 12(4), 296-305.

Murphy, G., & Lee, M. H. (2005). What are the roles of metalloproteinases in cartilage and bone damage? Ann Rheum Dis, 64 Suppl 4, iv44-47. Ornitz, D. M. (2005). FGF signaling in the developing endochondral skeleton. Cytokine and Growth Factor Reviews, 16(2), 205-213.

Pattoli, M. A., MacMaster, J. F., Gregor, K. R., & Burke, J. R. (2005). Collagen and aggrecan degradation is blocked in interleukin-1-treated cartilage explants by an inhibitor of IkappaB kinase through suppression of metalloproteinase expression. The Journal of Pharmacology and Experimental Therapeutics, 315(1), 382-388.

Plumb, D.C. (2002). Veterinary drug handbook. 4th ed. Iowa: Iowa Stage University, 960. Pritzker, K. P., Gay, S., Jimenez, S. A., Ostergaard, K., Pel letier, J. P., Revell, P. A., . . . van den Berg, W. B. (2006). Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis and Cartilage, 14(1), 13-29.

Roshak, A. K., Callahan, J. F., & Blake, S. M. (2002). Small-molecule inhibitors of NF-kappaB for the treatment of infl ammatory joint disease. Current Opinion in Rheumatology, 2(3), 316-321.

Rudolphi, K., Gerwin, N., Verzijl, N., van der Kraan, P., & van den Berg, W. (2003). Pralnacasan, an inhibitor of interleukin-1beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis and Cartilage, 11(10), 738-746.

Shimoaka, T., Ogasawara, T., Yonamine, A., Chikazu, D., Kawano, H., Nakamura, K., . . . Kawaguchi, H. (2002). Regulation of osteoblast, chondrocyte, and osteoclast functions by fi broblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. The Journal of Biological Chemistry, 277(9), 7493-7500.

Smeets, R. L., Veenbergen, S., Arntz, O. J., Bennink, M. B., Joosten, L. A., van den Berg, W. B., & van de Loo, F. A. (2006). A novel role for suppressor of cytokine signaling 3 in cartilage destruction via induction of chondrocyte desensitization toward insulin-like growth factor. Arthritis & Rheumatology, 54(5), 1518-1528.

Solomon, D. H. (2005). Selective cyclooxygenase 2 inhibitors and cardiovascular events. Arthritis & Rheumatology, 52(7), 1968-1978.

Solomon, S. D., McMurray, J. J. V., Pfeffer, M. A., Wittes, J., Fowler, R., Finn, P., . . . Investigators, A. P. w. C. S. (2005). Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. The new england Journal of Medicine, 352(11), 1071-1080.

Struglics, A., Larsson, S., Pratta, M. A., Kumar, S., Lark, M. W., & Lohmander, L. S. (2006). Human osteoarthritis synovial fl uid and joint cartilage contain both aggrecanase- and matrix metalloproteinase generated aggrecan fragments. Osteoarthritis and Cartilage, 14(2), 101-113. Takahashi, N., Rieneck, K., van der Kraan, P. M., van Beuningen, H. M., Vitters, E. L., Bendtzen, K., & van den Berg, W. B. (2005). Elucidation of IL-1/TGF-beta interactions in mouse chondrocyte cell line by genome-wide gene expression. Osteoarthritis and Cartilage, 13(5), 426-438.

Tchetina, E. V., Squires, G., & Poole, A. R. (2005). Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. The Journal of Rheumatology, 32(5), 876-886.

Tetlow, L. C., Adlam, D. J., & Woolley, D. E. (2001). Matrix metalloproteinase and proinfl ammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis &Rheumatology, 44(3), 585-594.

Trippel, S. B. (2004). Growth factor inhibition: potential role in the etiopathogenesis of osteoarthritis. Clinical Orthopaedics and Related Research (427 Suppl), S47-52.

Uitterlinden, E. J., Jahr, H., Koevoet, J. L. M., Jenniskens, Y. M., Bierma-Zeinstra, S. M. A., Degroot, J., . . . van Osch, G. J. V. M. (2006). Glucosamine decreases expression of anabolic and catabolic genes in human osteoarthritic cartilage explants. Osteoarthritis and Cartilage, 14(3), 250-257.

Varani, K., De Mattei, M., Vincenzi, F., Gessi, S., Merighi, S., Pellati, A., . . . Borea, P. A. (2008). Characterization of adenosine receptors in bovine chondrocytes and fi broblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fi elds. Osteoarthritis and Cartilage, 16(3), 292-304.

Vincent, T., Hermansson, M., Bolton, M., Wait, R., & Saklatvala, J. (2002). Basic FGF mediates an immediate response of articular cartilage to mechanical injury. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 8259-8264.

Vincent, T. L., Hermansson, M. A., Hansen, U. N., Amis, A. A., & Saklatvala, J. (2004). Basic fi broblast growth factor mediates transduction of me chanical signals when articular cartilage is loaded. Arthritis &Rheumatology, 50(2), 526-533.

Wieland, H. A., Michaelis, M., Kirschbaum, B. J., & Rudolphi, K. A. (2005). Osteoarthritis - an untreatable disease? Nature Reviews Drug Discovery, 4(4), 331-344.


Wu, W., Billinghurst, R. C., Pidoux, I., Antoniou, J., Zukor, D., Tanzer, M., & Poole, A. R. (2002). Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis & Rheumatology, 46(8), 2087-2094.