Prevalence of antimicrobial resistance and integrons in Escherichia coli isolated from feces of dairy goats in Nong Chok, Bangkok, Thailand https://doi.org/10.12982/VIS.2021.020

Main Article Content

Watsawan Prapasawat
Apiradee Intarapuk

Abstract

Antimicrobial resistance is recognized as a growing public health problem. Antimicrobial use and misuse in animal farms have boosted antimicrobial resistance among bacteria in the animal habitat and may be transferred to humans. Therefore, this study was to determine the prevalence of antimicrobial resistance, integrons and their association in Escherichia coli isolated from dairy goats in Nong Chok, Bangkok. Ninety-four fecal samples from dairy goats were collected by rectal swab between April 2019 and May 2019. Of 180 E. coli isolates, 141 were resistant to at least one antimicrobial agent by disc diffusion method. The most frequent E. coli resistance was to streptomycin 65.6% (118/180), followed by tetracycline 30.0% (54/180), kanamycin 21.7% (39/180), and sulfamethoxazole/trimethoprim 21.7% (39/180). Furthermore, the percentage of multidrug resistant (MDR) E. coli was 23.9% (43/180). Thirty-nine antimicrobial resistance profiles were found in this study and the most common resistance profiles were STR 23.3% (42/180), STR-TET-SXT 10.0% (18/180) and KAN-STR 6.7% (12/180). All of the 180 E. coli isolates were detected class 1 and 2 integrons by multiplex PCR. The results revealed 22.2% (40/180) were positive for integrons including resistant isolates 92.5% (37/40) and susceptible 7.5% (3/40). Moreover, E. coli isolates resistant to streptomycin, tetracycline, enrofloxacin and sulfamethoxazole/trimethoprim were significantly associated with the presence of integrons (P < 0.05). The data of this study indicated that dairy goats in farms could be a reservoir and possible spread of resistant isolates to farmers and consumers via animals and their products.

Article Details

How to Cite
Prapasawat, W. ., & Intarapuk, A. . (2021). Prevalence of antimicrobial resistance and integrons in Escherichia coli isolated from feces of dairy goats in Nong Chok, Bangkok, Thailand: https://doi.org/10.12982/VIS.2021.020. Veterinary Integrative Sciences, 19(2), 223–236. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/250525
Section
Research Articles

References

Adams, M.R., Moss, M.O., 2000. Food Microbiology. In: Aitkin CC, Thomas RC, eds.Cambridge: The Royal Society of Chemistry.

Adefarakan, T.A., Oluduro, A.O., David, O.M., Ajayi, A.O., Ariyo, A.B., Fashina, C.D., 2014.Prevalence of antibiotic resistance and molecular characterization of Escherichia coli
from faeces of apparently healthy rams and goats in ile-ife, southwest, Nigeria. IJS.16, 447-460.

Baragona, S., 2015. The use of antibiotics in livestock helps the animals stay healthy and grow faster but bacteria develop resistance to the drugs. Available at: https://www.voathai.
com/a/science-global-antibiotics-livestock-tk/2699380.html.

Barlow, R.S., Pemberton, J.M., Desmarchelier, P.M., Gobius, K.S., 2004. Isolation and characterization of integron-containing bacteria without antibiotic selection.
Antimicrob. Agents. Chemother. 48, 838-842.

Barton, M.D., 2014. Impact of antibiotic use in the swine industry. Curr. Opin. Microbio. 19,9-15.

Clinical and Laboratory Standards Institute [CLSI], 2018. Performance standards for antimicrobial susceptibility testing. 28th edition informational supplement, M100.Clinical and Laboratory Standards Institute. Wayne.

d de la Torre, E., Colello, R., Fernández, D., Etcheverría, A., Di Conza, J., Gutkind, G.O.,Tapia, M.O., Dieguez, S.N., Soraci, A.L., Padola, N.L., 2015. Multidrug resistance in
Escherichia coli carrying integrons isolated from a pig farm with moderate antibioticuse. J. Gen. Appl. Microbiol. 61, 270-273.

Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., Yu, G. 2015.Resistance integrons: class 1, 2 and 3 integrons. Ann. Clin. Microbiol. Antimicrob.
14(1), 45.

Division of Livestock Extension and Development, 2019. Summary table of goats. Department of Livestock Development. Thailand. Available at: http://region.dld.go.th/webnew/
images/stories/report2019/goat/summary_table_of_the_goat_.pdf.

Fluit, A.C., Schmitz, F.J., 2004. Resistance integrons and super-integrons. Clin. Microbiol.Infect. 10, 272-288.

Goldstein, C., Lee, M. D., Sanchez, S., Hudson, C., Phillips, B., Register, B., Grady, M.,Liebert, C., Summers, A. O., White, D. G., Maurer, J. J., 2001. Incidence of class 1
and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob. Agents. Chemother. 45, 723-726.

Graslund, S., Bengtsson, B. E., 2001. Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment-a review. Sci.
Total Environ. 280, 93–131.

Hariharan, H., Coles, M., Poole, D., Page, R., 2004. Antibiotic resistance among enterotoxigenic Escherichia coli from piglets and calves with diarrhea. Can. Vet. J.
45, 605-606.

Islam, K., Ahad, A., Barua, M., Islam, A., Chakma, s., Dorji, C., Uddin, M.A., Islam, S.,Ahasan, L.A.S.M., 2016. Isolation and epidermiology of multidrug resistant
Escherichia coli from goat in Cox’s Bazar, Bangladesh. JAVAR. 3, 166-172.

Kang, H. Y., Jeong, Y. S., Oh, J. Y., Tae, S. H., Choi, C. H., Moon, D. C., Lee, W. K., Lee, Y. C., Seo, S. Y., Cho, D. T., Lee, J. C., 2005. Characterization of antimicrobial resistance
and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J. Antimicrob. Chemother. 55, 639-644.

Ketkhao, P., Thongratsakul, S., Poolkhet, C., Wajjwalku, W., Amavisit, P. 2019. Antimicrobial resistant profiles of Escherichia coli and contaminated Salmonella spp. from pork and
butcher shops. Vet. Integr. Sci. 17(1), 11-20.

Kheiri, R., Akhtari, L., 2016. Antimicrobial resistance and integron gene cassette arrays in commensal Escherichia coli from human and animal sources in IRI. Gut. Pathog. 8,
1-10.

Kiranmayi, C.B., Krishnaiah, N., Mallika, E.N., 2010. Escherichia coli O157:H7 - An emerging pathogen in foods of animal origin. Veterinary World. 3, 382-389.

Lanz, R., Kuhnert, P., Boerlin, P., 2003. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland.
Vet. Microbiol. 91(1), 73-84.

Lim, J.Y., Yoon, J., Hovde, C.J., 2010. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 20(1), 5-14.

Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G.,Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D.L., Rice,
L.B., Stelling, J., Struelens, M.J., Vatopoulos, A., Weber, J.T., Monnet, D.L., 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an
international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3), 268-281.

Marshall, B.M., Levy, S.B., 2011. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 24, 718-733.

Nakavisut, S., Anothaisinthawee, S., 2014. Dairy goat production in Thailand. Available at: http://breeding.dld.go.th/small/sansak_papers/DairyGoatProduction in Thailand.

Njoroge, S., Muigai, A.W.T., Njiruh, P.N., Kariuki, S., 2013. Molecular characterization and antimicrobial resistance patterns of Escherichia coli isolates from goats slaughtered
in parts of Kenya. East. Afr. Med. J. 90(3), 72-83.

Obaidat, M.M., Bani Salman, A.E., Davis, M.A., Roess, A.A., 2017. Major diseases, extensive misuse, and high antimicrobial resistance of Escherichia coli in large- and small-scale
dairy cattle farms in Jordan. JDS. 3, 2324-2334.

Phongpaichit, S., Liamthong, S., Mathew, A. G., Chethanond, U., 2007. Prevalence of class 1 integrons in commensal Escherichia coli from pigs and pig farmers in Thailand. J.
Food. Prot. 70, 292-299.

Prapasarakul, N., Tummaruk, P., Niomtum, W., Tripipat, T., Serichantalergs, O., 2010. Virulence genes and antimicrobial susceptibilities of hemolytic and nonhemolytic
Escherichia coli isolated from post-weaning piglets in Central Thailand. J. Vet. Med.Sci. 72, 1603-1608.

Prapasawat, W., Intarapuk, A., Chompook, P., Nakajima, C., Suzuki, Y., Suthienkul, O., 2017.Antimcrobial resistance, intgron, virulence gene, and multilocus sequence typing of
Esherichia coli isolates from postweaning piglets with and without. Southeast Asian J. Trop. Med. Public Health. 48, 1042-1055.

Rodroo, J., Intanon, M., Kreausukon, K., Kongkaew, A., Bender, J., & Awaiwanont, N., 2020. Occurrence of extended-spectrum beta-lactamase producing E. coli in broiler farm
workers and the farm environment in Chiang Mai-Lamphun, Thailand. Vet. Integr. Sci. 19(1), 23-35.

Shabana, I.I., Al-Enazi, A.T., 2020. Investigation of plasmid-mediated resistance in E. coli isolated from healthy and diarrheic sheep and goats. Saudi. J. Biol. Sci. 27, 788-796.
Stalder, T., Barraud, O., Casellas, M., Dagot, C., Ploy, M.C., 2012. Integron involvement in environmental spread of antibiotic resistance. Front. Microbiol. 3, 2-10.

Stokes, H.W., Gillings, M.R., 2011. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS. Microbiol. Rev. 35,
790-819

Su, J., Shi, L., Yang, L., Xiao, Z., Li, X., Yamasaki, S., 2006. Analysis of integrons in clinical isolates of Escherichia coli in China during the last six years. FEMS. Microbiol. Lett.
254, 75-80.

Tanomsridachchai, W., Changkaew, K., Changkwanyeun, R., Prapasawat, W., Intarapuk, A., Fukushima, Y., Yamasamit, N., Flav Kapalamula, T., Nakajima, C., Suthienkul, O.,
Suzuki, Y., 2021. Antimicrobial resistance and molecular characterization of methicillin-resistant Staphylococcus aureus isolated from slaughtered pigs and pork
in the central region of Thailand. Antibiotics. 10(2), 2-12.

Trongjit, S., Angkittitrakul, S., Chuanchuen1, R., 2016. Occurrence and molecular characteristics of antimicrobial resistance of Escherichia coli from broilers, pigs and
meat products in Thailand and Cambodia provinces. Microbiol. Immunol. 60(9), 575-585

White, P. A., Mciver, C. J., Rawlinson, W. D., 2001. Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob. Agents. Chemother. 45, 2658-2661.

Zhang, S., Yang, H., Rehman, M., Yang, K., Dong, M., Yang, J., Wang, M., Jia, R., Chen, S., Liu, M., Zhu, D., Zhao, X., Yang, Q., Wu, Y., Zhang, L., Liu, Y., Yu, Y., Tian, B., Pan,
Le., Cheng, A., 2019. Class 1 integrons as predominant carriers in Escherichia coli isolates from waterfowls in Hainan, China. Ecotox. Environ. Safs. 183, 109514.

Zou, W., Li, C., Yang, X., Wang, Y., Chang, G., Zeng, J., Zhang, X., Chen, Y., Cai, R., Huang, Q., Feng, L., Wang, H., Li, D., Zhang, G., Chen, Y., Zhang, Z., Zhang, H., 2018.
Frequency of antimicrobial resistance and integrin gene cassettes in Escherichia coli isolated from giant pandas (Ailuropoda melanoleuca) in china. Microb. Pathog. 116,
173-179.