OXA-48-positive carbapenem-resistant Enterobacteriaceae in a farrow-to-finish pig farm: First report in Thailand https://doi.org/10.12982/VIS.2021.028

Main Article Content

Phaphatsanant Phongsarmsuan
Sunpetch Angkititrakul
Suphattra Jittimanee
Patchara Phuektes

Abstract

Carbapenem-resistant Enterobacteriaceae (CRE) have emerged as an urgent threat to public health. This study aimed to determine the occurrence of CRE and the carbapenemase genes in a farrow-to-finish pig farm, and to investigate carriage proportion and maintenance of CRE during the pig production cycle. We conducted a cross-sectional study by collecting 200 rectal swabs from healthy pigs of 5 groups: gilts, sows, piglets, weaners, and fatteners. In the longitudinal study, 20 healthy pigs were followed from 2 to 26 weeks old, and rectal swabs were collected from each pig for 5 times. Samples were screened for CRE using MacConkey agar supplemented with meropenem at 0.5 µg/mL. Identification and antimicrobial susceptibility pattern of the recovered isolates were determined using an automated system. PCR was used to detect carbapenemase genes. The occurrence of Enterobacteriaceae isolates with the carbapenem resistant phenotype and/or harboring the blaOXA-48 gene was 3% (6/200) in the cross-sectional study. Groups of sows and piglets had the same occurrence rate at 5% (2/40), while weaner and fattener groups had 2.5% (1/40). In the longitudinal study, CRE were not detected in pigs at an early age; however, two isolates were detected at the age of finishing. This study is the first report of Enterobacteriaceae with a carbapenem resistant phenotype and/or carrying blaOXA-48 gene in pigs in Thailand. Finding CRE in pigs at all age categories including finisher in the study farm underscores the need for active monitoring and surveillance studies to determine the occurrence of CRE in pig farms in Thailand. 

Article Details

How to Cite
Phongsarmsuan, P. ., Angkititrakul, S. ., Jittimanee, S. ., & Phuektes, P. . (2021). OXA-48-positive carbapenem-resistant Enterobacteriaceae in a farrow-to-finish pig farm: First report in Thailand: https://doi.org/10.12982/VIS.2021.028. Veterinary Integrative Sciences, 19(3), 317–332. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/251095
Section
Research Articles

References

Bassetti, M., Peghin, M., Vena, A., Giacobbe, D.R., 2019. Treatment of infections due to MDR gram-negative bacteria. Front. Med. (Lausanne). 6, 74.

Beyrouthy, R., Robin, F., Cougnoux, A., Dalmasso, G., Darfeuille-Michaud, A., Mallat, H., Dabboussi, F., Hamzé, M., Bonnet, R., 2013. Chromosome-mediated OXA-48 carbapenemase in highly virulent Escherichia coli. J. Antimicrob. Chemother. 68(7), 1558-1561.

Borowiak, M., Baumann, B., Fischer, J., Thomas, K., Deneke, C., Hammerl, J.A., Szabo, I., Malorny. B., 2020. Development of a novel mcr-6 to mcr-9 multiplex pcr and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant salmonella enterica isolates from environment, feed, animals and food (2011-2018) in germany. Front. Microbiol. 11, 80.

Callens, B., Persoons, D., Maes, D., Laanen, M., Postma, M., Boyen, F., Haesebrouck, F., Butaye, P., Catry, B., Dewulf, J., 2012. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev. Vet. Med. 106(1), 53-62.

Carattoli, A., 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 53(6), 2227-2238.

CLSI., 2017. M100: Performance standards for antimicrobial susceptibility testing. In. Wayne, PA: Clinical and Laboratory Standards Institute.

CLSI., 2018. M07: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In: Wayne, PA: Clinical and Laboratory Standards Institute.

Coyne, L., Arief, R., Benigno, C., Giang, V.N., Huong, L.Q., Jeamsripong, S., Kalpravidh, W., McGrane, J., Padungtod, P., Patrick, I., Schoonman, L., Setyawan, E., Sukarno, A.H., Srisamran, J., Ngoc, P.T., Rushton, J., 2019. Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics (Basel). 8(1), 33.

Dallenne, C., Da Costa, A., Decre, D., Favier, C., Arlet, G., 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 65(3), 490-495.

Dashti, A.A., Jadaon, M.M., Abdulsamad, A.M., Dashti, H.M., 2009. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med. J. 41 (2), 117-122.

Diene, S.M., Rolain, J.M., 2014. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 20(9), 831-838.

Fischer, J., Rodriguez, I., Schmoger, S., Friese, A., Roesler, U., Helmuth, R., Guerra, B., 2012. Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm. J. Antimicrob. Chemother. 67(7), 1793-1795.

Fosgate, G.T., 2009. Practical sample size calculations for surveillance and diagnostic investigations. J. Vet. Diagn. Invest. 21(1), 3-14.

Greisen, K., Loeffelholz, M., Purohit, A., Leong, D., 1994. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J. Clin. Microbiol. 32(2), 335-351.

Huang, H., Dong, N., Shu, L., Lu, J., Sun, Q., Chan, E.W., Chen, S., Zhang, R., 2020. Colistin-resistance gene mcr in clinical carbapenem-resistant Enterobacteriaceae strains in China, 2014-2019. Emerg. Microbes Infect. 9(1), 237-245.

Irrgang, A., Pauly, N., Tenhagen, B.A., Grobbel, M., Kaesbohrer, A., Hammerl, A.J., 2020a. Spill-Over from Public Health? First Detection of an OXA-48-Producing Escherichia coli in a German Pig Farm. Microorganisms. 8(6), 855.

Irrgang, A., Tausch, S.H., Pauly, N., Grobbel, M., Kaesbohrer, A., Hammerl, J.A., 2020b. First detection of GES-5-producing Escherichia coli from livestock-an increasing diversity of carbapenemases recognized from german pig production. Microorganisms. 8(10), 1593.

Köck, R., Daniels-Haardt, I., Becker, K., Mellmann, A., Friedrich, A.W., Mevius, D., Schwarz, S., Jurke, A., 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin. Microbiol. Infect. 24(12), 1241-1250.

Landers, T.F., Cohen, B., Wittum, T.E., Larson, E.L., 2012. A review of antibiotic use in food animals: perspective, policy, and potential. Public health reports. 127(1), 4-22.

Laolerd, W., Akeda, Y., Preeyanon, L., Ratthawongjirakul, P. and Santanirand, P., 2018. Carbapenemase-producing carbapenem-resistant Enterobacteriaceae from Bangkok, Thailand, and their detection by the Carba NP and modified carbapenem inactivation method tests. Microb. Drug Resist. 24(7), 1006-1011.

Lekagul, A., Tangcharoensathien, V., Mills, A., Rushton, J., Yeung, S., 2020. How antibiotics are used in pig farming: a mixed-methods study of pig farmers, feed mills and veterinarians in Thailand. BMJ Glob. Health. DOI: 10.1136/bmjgh-2019-001918.

Li, J., Shi, X., Yin, W., Wang, Y., Shen, Z., Ding, S., Wang, S., 2017. A Multiplex SYBR Green Real-Time PCR Assay for the Detection of Three Colistin Resistance Genes from Cultured Bacteria, Feces, and Environment Samples. Front. Microbiol. 8, 2078.

Li, Y., Sun, Q.L., Shen, Y., Zhang, Y., Yang, J.W., Shu, L.B., Zhou, H.W., Wang, Y., Wang, B., Zhang, R., Wang, S., Shen, Z., 2018. Rapid Increase in Prevalence of Carbapenem-Resistant Enterobacteriaceae (CRE) and Emergence of Colistin Resistance Gene mcr-1 in CRE in a Hospital in Henan, China. J. Clin. Microbiol. DOI: 10.1128/JCM.01932-17.

Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J.H., Shen, J., 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16(2), 161-168.

Logan, L.K., Weinstein, R.A., 2017. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 215(suppl_1), S28-S36.

Lunha, K., Chanawong, A., Lulitanond, A., Wilailuckana, C., Charoensri, N., Wonglakorn, L., Saenjamla, P., Chaimanee, P., Angkititrakul, S., Chetchotisakd P., 2016. High-level carbapenem-resistant OXA-48-producing Klebsiella pneumoniae with a novel OmpK36 variant and low-level, carbapenem-resistant, non-porin-deficient, OXA-181-producing Escherichia coli from Thailand. Diagn. Microbiol. Infect. Dis. 85(2), 221-226.

Mollenkopf, D.F., Mathys, D.A., Feicht, S.M., Stull, J.W., Bowman, A.S., Daniels, J.B., Wittum, T.E., 2018. Maintenance of Carbapenemase-Producing Enterobacteriaceae in a Farrow-to-Finish Swine Production System. Foodborne Pathog. Dis. 15(6), 372-376.

NARST, 2019. Antimicrobial Resistance 2000-2019(6M). Available from: http://narst.dmsc.moph.go.th/data/AMR%202000-2019-06M.pdf. Retrieved on 15-5-2020.

Nicolau, D.P., 2008. Carbapenems: a potent class of antibiotics. Expert Opin. Pharmacother. 9(1), 23-37.

Nirupama, K.R., Vinodh kumar, O.R., Pruthvishree, B.S., Sinha, D.K., Murugan, M.S., Krishnaswamy, N., Singh B.R., 2018. Molecular characterisation of blaOXA-48 carbapenemase-, extended-spectrum beta-lactamase- and Shiga toxin-producing Escherichia coli isolated from farm piglets in India. J. Glob. Antimicrob. Resist. 13, 201-205.

Nuangmek, A., Rojanasthien, S., Yamsakul, P., Tadee, P., Eiamsam-ang, T., Thamlikitkul, V., Tansakul, N., Suwan, M., Prasertsee, T., Chotinun, S., Patchanee, P., 2020. Perspectives on antimicrobial use in pig and layer farms in thailand: legislation, policy, regulations and potential. Vet. Integr. Sci. 19(1), 1-21.

Papp-Wallace, K.M., Endimiani, A., Taracila, M.A., Bonomo, R.A., 2011. Carbapenems: past, present, and future. Antimicrob. Agents Chemother. 55(11), 4943-4960.

Pruthvishree, B.S., Vinodh Kumar, O.R., Sinha, D.K., Malik, Y.P., Dubal, Z.B., Desingu, P.A., Shivakumar, M., Krishnaswamy, N., Singh, B.R., 2017. Spatial molecular epidemiology of carbapenem-resistant and New Delhi metallo beta-lactamase (blaNDM)-producing Escherichia coli in the piglets of organized farms in India. J. Appl. Microbiol. 122(6), 1537-1546.

Pulss, S., Semmler, T., Prenger-Berninghoff, E., Bauerfeind, R., Ewers, C., 2017. First report of an Escherichia coli strain from swine carrying an OXA-181 carbapenemase and the colistin resistance determinant MCR-1. Int. J. Antimicrob. Agents. 50(2), 232-236.

Rebelo, A.R., Bortolaia, V., Kjeldgaard, J.S., Pedersen, S.K., Leekitcharoenphon, P., Hansen, I.M., Guerra, B., Malorny, B., Borowiak, M., Hammerl, J.A., Battisti, A., Franco, A., Alba, P., Perrin-Guyomard, A., Granier, S.A., De Frutos Escobar, C., Malhotra-Kumar, S., Villa, L., Carattoli, A., Hendriksen, R.S., 2018. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro. Surveill. 23(6), 17-00672.

Rojas, L.J., Salim, M., Cober, E., Richter, S.S., Perez, F., Salata, R.A., Kalayjian, R.C., Watkins, R.R., Marshall, S., Rudin, S.D., Domitrovic, T.N., Hujer, A.M., Hujer, K.M., Doi, Y., Kaye, K.S., Evans, S., Fowler, V.G., Bonomo, R,A., van Duin, D., 2017. Colistin Resistance in Carbapenem-Resistant Klebsiella pneumoniae: Laboratory Detection and Impact on Mortality. Clin. Infect. Dis. 64(6), 711-718.

Srijan, A., Margulieux, K.R., Ruekit, S., Snesrud, E., Maybank, R., Serichantalergs, O., Kormanee, R., Sukhchat, P., Sriyabhaya, J., Hinkle, M., Crawford, J.M., McGann, P., Swierczewski, B.E., 2018. Genomic characterization of nonclonal mcr-1-positive multidrug-resistant Klebsiella pneumoniae from clinical samples in Thailand. Klebsiella pneumoniae from clinical samples in Thailand. Microb. drug resist. 24(4), 403-410.

Tijet, N., Alexander, D.C., Richardson, D., Lastovetska, O., Low, D.E., Patel, S.N., Melano, R.G., 2011. New Delhi metallo-beta-lactamase, Ontario, Canada. Emerg. Infect. Dis. 17(2), 306-307.

WHO., 2017. WHO publishes list of bacteria for which new antibiotics are urgently needed. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Retrieved on 15-5-2020.

Xavier, B.B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H. and Malhotra-Kumar, S., 2016. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro. Surveill. 21(27).

Zhang, W., Zhu, Y., Wang, C., Liu, W., Li, R., Chen, F., Luan, T., Zhang, Y., Schwarz, S., Liu, S., 2019. Characterization of a Multidrug-Resistant Porcine Klebsiella pneumoniae Sequence Type 11 Strain Coharboring blaKPC-2 and fosA3 on Two Novel Hybrid Plasmids. mSphere. DOI: 10.1128/mSphere.00590-19

Zhou, H., Zhang, K., Chen, W., Chen, J., Zheng, J., Liu, C., Cheng, L., Zhou, W., Shen, H., Cao, X., 2020. Epidemiological characteristics of carbapenem-resistant Enterobacteriaceae collected from 17 hospitals in Nanjing district of China. Antimicrob. Resist. Infect. Control. 9(1), 15.

Zhu, Y., Zhang, W., Schwarz, S., Wang, C., Liu, W., Chen, F., Luan, T., Liu, S., 2019. Characterization of a blaIMP-4-carrying plasmid from Enterobacter cloacae of swine origin. J. Antimicrob, Chemother. 74(7), 1799-1806.

Zurfluh, K., Nuesch-Inderbinen, M.T., Poirel, L., Nordmann, P., Hachler, H. , Stephan, R., 2015. Emergence of Escherichia coli producing OXA-48 beta-lactamase in the community in Switzerland. Antimicrob Resist Infect Control. DOI: 10.1186/s13756-015-0051-x.