Multidrug-resistance and mobile colistin resistance (mcr) genes of Salmonella isolates from pork in Thailand during 2014-2017: comparison between two different types of slaughterhouses and retails https://doi.org/10.12982/VIS.2021.029
Main Article Content
Abstract
Food-producing animals are the major reservoir for Salmonella infections in humans. Salmonella contamination and spread of antimicrobial resistance genes can occur during the production chain of animal products. The aims of this study were to investigate antimicrobial resistance patterns and compare the proportions of multidrug resistance and the presence of mobile colistin resistance (mcr) genes, mcr-1, mcr-2 and mcr-3, among Salmonella isolates which were recovered from pork at two different standard practice slaughterhouses and retails during 2014-2017 in Thailand. Salmonella isolates recovered from good standard practice slaughterhouses (GSH, n=75), below standard practice slaughterhouses (BSH, n=75), good standard practice retails (GRT, n=75) and below standard practice retails (BRT, n=75) were examined for their antimicrobial resistance patterns and the existence of mcr-1 to mcr-3 genes. Salmonella strains of the 4 origins showed similar resistance rates to almost all antimicrobial agents tested. BRT origin (33/75, 44%) had slightly higher proportion of MDR Salmonella than the others group with no statistical difference. Five MDR Salmonella isolates carrying the mcr-3 gene were detected among isolates of all origins, while only 4 isolates (1.33%) displayed colistin resistance phenotype (MIC 4-8 ug/mL). This study revealed that MDR Salmonella isolates have widely spread in both standard and low hygiene practice slaughterhouses and retails. This is the first report of mcr-3 positive MDR Salmonella isolates from pork in Thailand. Effective monitoring program in slaughterhouses and retails should be continually implemented to reduce the contamination of MDR Salmonella carrying the mcr gene to consumers.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
CCampos, J., Cristino, L., Peixe, L., Antunes, P., 2016. MCR-1 in multidrug-resistant and copper-tolerant clinically relevant Salmonella 1,4,[5],12:i:- and S. Rissen clones in Portugal, 2011 to 2015. Euro. Surveill. 21(26). doi: 10.2807/1560-7917.ES.2016.21.26.30270.
Cavallo, S.J., Daly, E.R., Seiferth, J., Nadeau, A.M., Mahoney, J., Finnigan, J., Wikoff, P.,Kiebler, C.A., Simmons, L., 2015. Human outbreak of Salmonella Typhimurium associated with exposure to locally made chicken jerky pet treats, New Hampshire, 2013. Foodborne. Pathog. Dis. 12(5), 441-446.
Chanachai, K., Pittayawonganon, C., Areechokchai, D., Suchatsoonthorn, C., Pokawattan, L.,Jiraphongsa, C., 2008. A food borne outbreak of gastroenteritis due to shigella and possibly Salmonella in a school. Southeast. Asian. J. Trop. Med. Public. Health. 39(2), 297-302.
Choi, Y.M., Park, H.J., Jang, H.I., Kim, S.A., Imm, J.Y., Hwang, I.G., Rhee, M.S., 2013.Changes in microbial contamination levels of porcine carcasses and fresh pork in slaughterhouses, processing lines, retail outlets, and local markets by commercial distribution. Res. Vet. Sci. 94(3), 413-418.
CLSI. 2016. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute 26th Edition.
Colello, R., Ruiz, M.J., Padín, V.M., Rogé, A.D., Leotta, G., Padola, N.L., Etcheverría, A.I.,Detection and Characterization of Salmonella serotypes in the production chain of two pig farms in Buenos Aires province, Argentina. Front. Microbiol. 9, 1370. doi: 10.3389/fmicb.2018.01370.
Crump, J.A., Sjölund-Karlsson, M., Gordon, M.A., Parry, C.M., 2015. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 28(4), 901-937.
DLD. 2018. Department of Livestock Development Notification of the Department of Livestock Development, Ministry of Agriculture and Cooperatives: medicated feed which not allow to be produced, imported, sold and used. Available from: http://afvc.dld.go.th/index.php/2016-04-12-04-46-53/func-startdown/275/. (in Thai).
EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control)., 2019. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA. J. 17(2), e05598. doi: 10.2903/j.efsa.2019.5598.
Evangelopoulou, G., Krita, S., Govaris, A., Burriel, A.R., 2014. Pork meat as a potential source of Salmonella enterica subsp. arizonae infection in humans. J. Clin. Microbiol. 52(3), 741-744.
Fukushima, K., Yanagisawa, N., Sekiya, N., Izumiya, H., 2020. Bacteremia Caused by Salmonella Poona in a Healthy Adult in Tokyo, Japan. Intern. Med. 59(2), 289-292.
Gelbíčová, T., Baráková, A., Florianová, M., Jamborová, I., Zelendová, M., Pospíšilová, L.,Koláčková, I., Karpíšková, R., 2019. Dissemination and comparison of genetic determinants of mcr-mediated colistin resistance in Enterobacteriaceae via retailed raw meat products. Front. Microbiol. 10, 2824. doi: 10.3389/fmicb.2019.02824
Grimont, A.D.P. and Weill, F.X., 2007. Antigenic formulae of the Salmonella serovars. 9th edition, WHO Collaborating Center for Reference and Research on Salmonella. Institute Pasteur, Paris, France. p.1-166.
Gomes-Neves, E., Antunes, P., Tavares, A., Themudo, P., Cardoso, M.F., Gärtner, F.,Costa, J.M., Peixe, L., 2012. Salmonella cross-contamination in swine abattoirs in Portugal Carcasses, meat and meat handlers. Int. J. Food. Microbiol. 157, 82–87.
Hallenberg, G. S., Jiwakanon, J., Angkititrakul, S., Kang-Air, S., Osbjer, K., Lunha, K., Sunde, M., Järhult, J. D., Van Boeckel, T. P., Rich, K. M., Magnusson, U., 2020. Antibiotic use in pig farms at different levels of intensification-Farmers' practices in northeastern Thailand. PloS. One. 15(12), e0243099. doi: 10.1371/journal.pone.0243099.
Hu, Y., Fanning, S., Gan, X., Liu, C., Nguyen, S., Wang, M., Wang, W., Jiang, T., Xu, J., Li,F., 2019. Salmonella harbouring the mcr-1 gene isolated from food in China between 2012 and 2016. J. Antimicrob. Chemother. 74(3), 826-828.
Jimenez, L., Ignar, R., Smalls, S., Grech, P., Hamilton, J., Bosko, Y., English, D., 1999.Molecular detection of bacterial indicators in cosmetic/pharmaceutical samples. J. Ind. Microbiol. Biotechnol. 21(2), 93–95.
Lekagul, A., Tangcharoensathien, V., Mills, A., Rushton, J., Yeung, S., 2020. How antibiotics are used in pig farming: a mixed-methods study of pig farmers, feed mills and veterinarians in Thailand. BMJ. Glob. Health. 5(2), e001918. doi: 10.1136/bmjgh-2019-001918.
Li, J., Shi, X., Yin, W., Wang, Y., Shen, Z., Ding, S., Wang, S., 2017. A multiplex SYBR green real-time PCR assay for the detection of three colistin resistance genes from cultured bacteria, feces, and environment samples. Front. Microbiol. 8, 2078. doi: 10.3389/fmicb.2017.02078.
Majowicz, S.E., Musto, J., Scallan, E., Angulo, F.J., Kirk, M., O’Brien, S.J., Jones, T.F., Fazil, A., Hoekstra, R.M., 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50(6), 882–889.
Mendelson, M., Brink, A., Gouws, J., Mbelle, N., Naidoo, V., Pople, T., Schellack, N., van Vuuren, M., Rees, H., 2018. The one health stewardship of colistin as an antibiotic of last resort for human health in South Africa. Lancet. Infect. Dis. 18, 288–294.
Mezal, E.H., Sabol, A., Khan, M.A., Ali, N., Stefanova, R., Khan, A.A., 2014. Isolation and molecular characterization of Salmonella enterica serovar Enteritidis from poultry house and clinical samples during 2010. Food. Microbiol. 38, 67-74.
Moon, D.C., Kim, S.J., Mechesso, A.F., Kang, H.Y., Song, H.J., Choi, J.H., Yoon, S.S., Lim, S.K., 2021. Mobile colistin resistance gene mcr-1 Detected on an IncI2 plasmid in Salmonella Typhimurium sequence type 19 from a healthy pig in South Korea. Microorganisms. 9(2), 398. doi: 10.3390/microorganisms9020398.
Nuanmuang, N., Kummasook, A., 2018. Prevalence and antimicrobial resistance of Salmonella in minced pork from retail shops around the university of Payao, Thailand. Naresuan University Journal: Science and Technology (NUJST). 26(4), 9-16.
Patchanee, P., Tansiricharoenkul, K., Buawiratlert, T., Wiratsudakul, A., Angchokchatchawal K, Yamsakul P, Yano T, Boonkhot P, Rojanasatien S., Tadee P., 2016. Salmonella in pork retail outlets and dissemination of its pulsotypes through pig production chain in Chiang Mai and surrounding areas, Thailand. Prev. Vet. Med. 130, 99-105.
Phongaran, D., Khang-Air, S., Angkititrakul, S., 2019. Molecular epidemiology and antimicrobial resistance of Salmonella isolates from broilers and pigs in Thailand. Vet. World. 12(8), 1311-1318.
Poolperm, P., Tangkoskul, T., Seenama, C., Maknakhon, N., Thamlikitkul, V., 2020.Association between the use of colistin for short-term treatment of Gram-negative bacterial infections and the emergence of colistin-resistant Enterobacteriaceae in swine from selected swine farms in Thailand. PLoS. One. 15(10), e0238939. doi:10.1371/journal.pone.0238939.
Rhouma, M., Beaudry, F., Thériault, W., Letellier, A., 2016. Colistin in Pig Production:Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front. Microbiol. 7, 1789. doi: 10.3389/fmicb.2016.01789.
Rule, R., Mbelle, N., Sekyere, J.O., Kock, M., Hoosen, A., Said, M., 2019. A rare case of Colistin-resistant Salmonella Enteritidis meningitis in an HIV-seropositive patient. BMC. Infect. Dis. 19(1), 806. doi:10.1186/s12879-019-4391-7.
Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L., Griffin, P.M., 2011. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 17(1), 7-15.
Sinwat, N., Angkittitraku,l S., Coulson, K.F., Pilapil, FMIR., Meunsene, D., Chuanchuen, R.,High prevalence and molecular characteristics of multidrug-resistant Salmonella in pigs, pork and humans in Thailand and Laos provinces. J. Med. Microbiol. 65(10), 1182-1193.
TAS 9004., 2004. Thai Agricultural Standard: Good manufacturing practices for abattoir.National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and Cooperatives, Thailand.
Vidayanti, I. N., Sukon, P., Khaengair, S., Pulsrikarn, C., Angkittitrakul, S., 2020.Prevalence and antimicrobial resistance of Salmonella spp. isolated from chicken meat in upper northeastern Thailand. Vet. Integra. Sci. 19(2), 121-131.
Wilhelm, B., Rajic, A., Greig, J.D., Waddell, L., Harris, J., 2011. The effect of hazard analysis critical control point programs on microbial contamination of carcasses in slaughterhouses: a systematic review of published data. Foodborne. Pathog. Dis. 8(9), 949-60.
Wu, X., Suksawat, F., Richards, A.L., Phommachanh, S., Phongaran, D., Angkititrakul, S.,Evaluation of the Containment of Antimicrobial-Resistant Salmonella Species from a Hazard Analysis and Critical Control Point (HACCP) and a Non-HACCP Pig Slaughterhouses in Northeast Thailand. Pathogens. 9(1), 20.
Zhang, J., Chen, L., Wang, J., Yassin, A.K., Butaye, P., Kelly, P., Gong, J., Guo, W., Li, J., Li,M., Yang, F., Feng, Z., Jiang, P., Song, C., Wang, Y., You, J., Yang, Y., Price, S., Qi, K., Kang, Y., Wang, C., 2018. Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Sci. Rep. 8, 3705.