Vitamin D2 production and in vitro ruminal degradation of UV-B irradiated vitamin D enriched yeast in Thai native cattle https://doi.org/10.12982/VIS.2021.042
Main Article Content
Abstract
The purposes of this study were to investigate the optimum UV-B irradiation time needed to produce vitamin D enriched yeast and to promote in vitro ruminal degradation of UV-B irradiated vitamin D enriched yeast in Thai native cattle. Baker’s yeast and S. cerevisiae were irradiated at 0, 2, 4, 8, 10, 12, 16 and 24 hours. The UV-B irradiation of both yeast
strains could significantly enhance vitamin D2 to the highest amount at 16 hours. The corn stover and TMR were studied for determination of in vitro ruminal degradation, included three treatments that involved each type of feed, namely feedstuff without supplementation, feedstuff with live yeast supplementation and feedstuff with UV-B irradiated vitamin
D enriched yeast. Gas production data of the live yeast group and the UV-B irradiated vitamin D enriched yeast supplementation group, were significantly higher than those of the control groups for both types of feedstuffs. The vitamin D content of the vitamin D enriched yeast supplementation groups were not significantly different from those of the groups subjected to an initial incubation period (10.98 vs. 14.43μg, respectively). Therefore, after a period of irradiation of 16 hours, the two yeasts strain produced the highest vitamin D2 content, while Baker’s yeast produced vitamin D2 at higher amounts than S. cerevisiae. Notably, UV-B irradiated vitamin D enriched yeast improved the in vitro ruminal degradation, while also preventing a loss in the amount of vitamin D that was degraded by the rumen microorganisms.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Abe, F., Hiraki, T., 2009. Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. J. Biochimica. et. Biophysica. Acta. 1788(3), 743-752.
AOAC., 2000. Official Method of Analysis, 18th Edition. Animal Feeds: Association of Official Analytical Chemists, MD, USA.
Kovitvadhi, A., Chundang, P., Thongprajukaew, K., Tirawattanawanich, C., 2019. Estimating the apparent total tract digestibility at different ages in rabbits by using faecal enzyme activities and in vitro digestibility on diets as predictors. Chiang Mai Vet. J. 17(2), 141-159.
Arnold, W.N., 1972. The structure of the yeast cell wall solubilization of a marker enzyme, β- fructofuranosidase, by the autolytic enzyme system. J. Biol. Chem. 247(4), 1161-1169.
Blümmel, M., Steingaβ, H., Becker, K., 1997. The relationship between in vitro gas production, in vitro microbial biomass yield and 15 N incorporation and its implications for the
prediction of voluntary feed intake of roughages. British J. Nutri. 77(6), 911-921.
Braun, M., Fuss, W., Kompa, K.L., 1991. Improved photosynthesis of previtamin D by wavelengths of 280-300 nm. J. Photochem. Photobioi Chem. 61, 15-26.
Chaucheyras-Durand, F., Fonty, G., 2001. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reprod. Nutr. Dev. 41, 57-68.
Dias, A.L.G., Freitas, J.A., Micai, B., Azevedo, R.A., Greco, L.F., Santos, J.E.P., 2017. Effect of supplement yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J. Dairy Sci. 101, 201-221.
Dusso, A.S., Brown, A.J., 1998. Mechanism of Vitamin D Action and Its Regulation. Am. J.
Kidney. Dis. 32(4), 13-24.
Dusso, A.S., Brown, A.J., Slatopolsky, E., 2005. Vitamin D. Am. J. Physiol. Renal. Physiol. 289, 8-28.
Elangovan, H., Chahal, S., Gunton, J.E., 2017. Vitamin D in liver disease: Current evidence and potential directions. J. Biochimica. et. Biophysica. Acta. 1863, 907-916.
Elena, M., Agafia, U., Nadejda, E., Natalia, C., Ludmila, F., 2013. Biotechnological aspects concerning the ergosterol obtianing from yeasts. J. Analele Universităţii din. Oradea, Fas. Bio. 1, 12-18.
Ettle, T., Schwarz, F.J., 2002. Auswirkungen einer gestaffelten Versorgung mit nutzbarem Rohprotein auf Leistungskriterien in der Milchviehfutterung bei unterschiedlichen Grundfutterarten. 1. Mitteilung: Frisches Grunfutter. Zuchtungskde. 74, 157-168.
Fonty, G., Chaucheyras-Durand, F., 2006. Effects and modes of action of live yeasts in the rumen. J. Bio. Brat. 61, 741-750.
Foss, Y.J., 2009. Vitamin D deficiency is the cause of common obesity. J. Medical
Hypotheses. 72(3), 314–321.
Fuoli, L.A., Mellado, E., Effron, G., Lopez, J., Grimalt, J., Estrella, J., Tudela, J., 2008. Ergosterol biosynthesis pathway in Aspergillus fumigatus Steroids. J. Steroid Biochem. Mol. Bio. 73, 339-347.
Galip, N., 2006. Effect of supplemental yeast culture and sodium bicarbonate on ruminal fermentation and blood variables in rams. J. Anim. Physiol. Anim. Nutr. 90, 446-452.
Girard, I.D., Dawson, K.A., 1995. Stimulation of ruminal bacteria by different fractions derived from cultures of Saccharomyces cerevisiae strain 1026. J. Anim. Sci. 73, 264-274.
James, A.P., Kilbey, B.J., 1977. The timing of UV mutagenesis in yeast: A pedigree analysis of induced recessive mutation. Genetics. 87(2), 237-48.
Jasinghe, V.J., Perera, C.O., 2005. Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. J. Food Chem. 92(3), 541-546
Jouany, J.P., 2006. Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. J. Anim. Reprod. Sci.96, 250-264.
Jouany, J.P., Mathieu, F., Senaud, J., Bohatier, J., Bertin, G., Mercier, M., 1999. Effects of Saccharomyces cerevisiae and Aspergillus oryzae on the population of rumen microbes and their polysaccharidase activities. S. Afr. J. Anim. Sci. 29, 63-64.
Kim, D.Y., Figueroa, M.R.., Dawson, D.P., Batallas, C.E., Arambel, M.J., Walters, J.L., 1992.Efficacy of supplemental viable yeast culture with or without Aspergillus oryzae on nutrient digestibility and milk production in early to mid-lactating dairy cows. J. Dairy Sci. 75(1), 204-213.
Laura, T., Helen, L., Kathryn, H., Colin, P.S., Giselda, B., Simon, P., Gemma, C., Elina, H., Jacqueline, B., Reinhold, V., Susan, L., 2012. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am. J. Clin. Nutr. 95(6), 1357–1364.
Mattila, P.H., Piironen, V.I., Uusi-Rauva, E.J., Koivistoinen, P.E., 1994. Vitamin D contents in edible mushrooms. J. Agric. Food Chem. 42, 2449-2453.
Menke, K., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. J. Anim. Res. Dev. 28, 7-55
Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D., Schneider, W., 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93(1), 217-222.
Morawetz, C., Hagen, U., 1990. Effect of irradiation and mutagenic chemicals on the generation of ADH2- and ADH4-constitutive mutants in yeast: the inducibility of Ty transposition by UV and ethyl methanesulfonate. J. Mut. Res./Fund. Mol. Mech. Mut.
(1), 69-77.
Nielsen, J., Jewett, M.C., 2008. Impact of systems biology on metabolic engineering of
Saccharomyces cerevisiae. J. FEMS. Yeast Res. 8, 122–131.
Ørskov, E., McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92(2),499-503.
Reiner, S., Micolod, D., Schneiter, R., 2005. Saccharomyces cerevisiae a model to study sterol uptake and transport in eukaryotes. J. Biochem. Soc. Trans. 33, 1186-1188.
Rivera, J.R., De La Piedra, C., Ramos, A., Ortiz, A., Egido, J., 2010. The expanding spectrum of biological actions of vitamin D. J. Nephrol. Dialysis Trans. 25(9), 2850–2865.
Schmid, A., Walther, B., 2013. Natural vitamin D content in animal products. Advances in
Nutrition. 4, 453-462.
Shafique, S., Bajwa, R., Shafique, S., 2009. Mutation of Alternaria tenuissima FCBP-252 for hyper-active α–amylase. Indian J. Exp. Biol. 47(7), 591-96.
Shafique, S., Bajwa, R., Shafique, S., 2011. Strain improvement in Trichoderma viride through mutation for overexpression of cellulase and characterization of mutants using random amplified polymorphic DNA (RAPD). Afr. J. Biotechnol. 10(84), 90-97.
Sommerfeldt, J.L., Horst, R.L., Napoli, J.L., Beitz, D.C., Littledike, E.T., 1980. Evidence for in vitro production of vitamin D2 and vitamin D3 metabolites by rumen microbes. J. Dairy Sci. 63, 88-92.
Sommerfeldt, J.L., Horst, R.L., Littledike, E.T., Beitz, D.C., 1979. In vitro degradation of cholecalciferol in rumen fluid. J. Dairy Sci. 62(1), 192–193.
Steel, R.G.D., Torrie, J.H., 1980. Principles and Procedures of Statistics, Second Edition, McGraw-Hill, New York.
Thiangtum, W., Kananub, S., Sujaritthanyatrakul, C., 2013. Association between urine pH and subclinical hypocalcaemia among peripaturient dairy cows in Western part of Thailand. Chiang Mai Vet. J. 11(1), 3-8.
Teichmann, R., Dutta, P.C., Staffas, A., Jägerstad, M., 2007. Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: Effects of UV irradiation. LWT - Food Sci. Tech. 40(5), 815–822.
Sirisan, V., 2017. Strategies to reduce ruminal acidosis by using microorganism. Chiang Mai Vet. J. 15(1), 51-62.
Piyadeatsoontorn, S., Sornplang, P., Chuachan, U., Puyati, B., 2018. Effect of lactobacilli probiotics supplementation on intestinal bacteria and growth performance in weaned pigs. Chiang Mai Vet. J. 16(3), 211-221.
Suwan, C., Chitmanat, C., 2017. The application of probiotics for Tilapia culture. Chiang Mai Vet. J. 15(1), 15-24.
Walker, G.M., 1998. Yeast Physiology and Biotechnology, John Wiley and Sons Ltd, England.