Association of genetic markers with sex determination in Thai red tilapia

Main Article Content

Watcharapong Naraballobh
Nanthana Pothakam
Worrarak Norseeda
Noppasin Sommit
Tawatchai Teltathum
Hien Van Doan
Korawan Sringarm
Trisadee Khamlor
Supamit Mekchay


The objectives of this study were to verify the polymorphism on sex-linked marker loci and to assess their associations with phenotypic sex characteristics in red tilapia. Four sex-linked genetic markers of Amh, SCAR4, SCAR5, and Oni3161 were genotyped in the Thai red tilapia population. The Amh marker was significantly associated with the phenotypic sex of red tilapia with an accuracy of 46.2%. No significant association of SCAR4, SCAR5, and Oni3161 marker polymorphisms with phenotypic sex characteristics was observed in this study. However, the combinations of these two, three, and four markers were increasingly associated with phenotypic sex characteristics for red tilapia with an accuracy of 62.8, 68.4, and 72.4%, respectively. These results indicate that these combined genetic markers were associated with the phenotypic sex of red tilapias. These findings confirmed the importance of these genetic markers as candidate markers for sex determination in the Thai red tilapia population.


Download data is not yet available.

Article Details

How to Cite
Naraballobh, W. ., Pothakam, N. ., Norseeda, W. ., Sommit, N. ., Teltathum, T. ., Van Doan, H. ., Sringarm, K. ., Khamlor, T. ., & Mekchay, S. . (2021). Association of genetic markers with sex determination in Thai red tilapia: Veterinary Integrative Sciences, 20(1), 73–83. Retrieved from
Research Articles


Beardmore, J.A., Mair, G.C., Levis, R.I., 2001. Monosex male production in finish as exemplified by tilapia: applications, problems, and prospets. Aquaculture 197, 283-301.

Cáceres, G., López, M.E., Cádiz, M.I., Yoshida, G.M., Jedlicki, A., Palma-Véjares, R., Travisany, D., Díaz-Domínguez, D., Maass, A., Lhorente, J.P., Soto, J., Salas, D., Yáñez, J.M., 2019. Fine mapping using whole-genome sequencing confirms anti-Müllerian hormone as a major gene for sex determination in farmed Nile tilapia (Oreochromis niloticus L.). G3 (Bethesda) 9, 3213-3223.

Conte, M.A., Gammerdinger, W.J., Bartie, K.L., Penman, D.J., Kocher, T.D., 2017. A high quality assembly of the Nile tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics 18, 341.

El-Greisy, Z.A., El-Gamal, A.E., 2012. Monosex production of tilapia, Oreochromis niloticus using different doses of 17alpha-methyltestosterone with respect to the degree of sex stability after one year of treatment. Egypt. J. Aquat. Res. 38, 59-66.

Eshel, O., Shirak, A., Weller, J.I., Hulata, G., Ron, M., 2012. Linkage and physical mapping of sex region on LG23 of Nile tilapia (Oreochromis niloticus). G3 (Bethesda) 2, 35-42.

Eshel, O., Shirak, A., Dor, L., Band, M., Zak, T., Markovich-Gordon, M., Chalifa-Caspi, V., Feldmesser, E., Weller, J.I., Seroussi, E., Hulata, G., Ron, M., 2014. Identification of male-specific Amh duplication, sexually differentially expressed genes and microRNAs at early embryonic development of Nile tilapia (Oreochromis niloticus). BMC Genomics 15, 774.

Lee, B.Y., Kocher, T.D., 2007. Exclusion of Wilms tumour (WT1b) and ovarian cytochrome P450 aromatase (CYP19A1) as candidates for sex determination genes in Nile tilapia (Oreochromis niloticus). Anim. Genet. 38, 85-86.

Mair, G.C., Abucay, J.S., Skibinski, D.O.F., Abella, T.A., Beardmore, J.A., 1997. Genetic manipulation of sex ratio for the large-scale production of all-male tilapia, Oreochromis niloticus. Can. J. Fish. Aquat. Sci. 54, 396-404.

Palaiokostas, C., Bekaert, M., Khan, M.G.Q., Taggart, J.B., Gharbi, K., McAndrew, B.J., Penman, D.J., 2013. Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) using RAD sequencing. PLoS One 8, e68389.

Palaiokostas, C., Bekaert, M., Khan, M.G.Q., Taggart J.B., Gharbi, K., McAndrew, B.J., Penman, D.J., 2015. A novel sex-determining QTL in Nile tilapia (Oreochromis niloticus). BMC Genomics 16, 171.

Rosenstein, S., Hulata, G., 1994. Sex reversal in the genus Oreochromis: optimization of feminization protocol. Aquac. Res. 25, 329-339.

Shirak, A., Seroussi, E., Cnaani, A., Howe, A.E., Domokhovsky, R., Zilberman, N., Kocher, T.D., Hulata, G., Ron, M., 2006. Amh and Dmrta2 genes map to tilapia (Oreochromis spp.) linkage group 23 within quantitative trait locus regions for sex determination. Genetics 174, 1573-1581.

Sun, Y.L., Jiang, D.N., Zeng, S., Hu, C.J., Ye, K., Yang, C., Yang, S.J., Li, M.H., Wang, D.S., 2014. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus). Aquaculture 433, 19-27.

Triay, C., Conte, M.A., Baroiller, J.F., Bezault, E., Clark, F.E., Penman, D.J., Kocher, T.D., D'Cotta, H., 2020. Structure and sequence of the sex determining locus in two wild populations of Nile tilapia. Genes (Basel) 11, 1017.

Wassertheil-Smoller, S., 2004. Biostatistics and Epidemiology: A Primer for Health and Biomedical Professionals. 3rd edition. Springer-Verlag, Bronx, New York.

Taslima, K., Khan, M.G.Q., McAndrew, B.J., Penman, D.J., 2021. Evidence of two XX/XY sex-determining loci in the Stirling stock of Nile tilapia (Oreochromis niloticus). Aquaculture 532, 735995.