Echocardiographic parameters in different age and sex of Sprague-Dawley rats under isoflurane anesthesia https://doi.org/10.12982/VIS.2022.011

Main Article Content

Pitipat Kitpipatkun
Catthareya Sukwan

Abstract

Echocardiography is a useful technique for diagnosing cardiovascular disease that is safe, reproducible and accurate. A comprehensive understanding of echocardiographic parameters in different age and sex is useful for cardiovascular study. Thirty Sprague-Dawley rats of both sexes at different age underwent repetitive echocardiography. The characteristics of early and late diastolic waves through the mitral inflow depend on the heart rate. The rats had fast heart rates, with early and late diastolic Doppler flows commonly fused. Several parameters in male rats were higher than in females except for ejection fraction, fractional shortening, isovolumetric relaxation time, pre-ejection fraction and ejection time that did not differ. Different age, sex, breed and anesthesia protocol can all cause diverse results. Rat echocardiography can be potentially used as a model for human cardiovascular research. Results revealed changes in echocardiographic parameters in different age and sex to better understand normal cardiovascular functions in rat model

Article Details

How to Cite
Kitpipatkun, P. ., & Sukwan, C. . (2021). Echocardiographic parameters in different age and sex of Sprague-Dawley rats under isoflurane anesthesia: https://doi.org/10.12982/VIS.2022.011. Veterinary Integrative Sciences, 20(1), 117–131. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/255473
Section
Research Articles

References

Ari, M. E., Ekici, F., Çetin, İ., Tavil, E. B., Yaralı, N., Işık, P., Hazırolan, T., Tunç, B., 2017. Assessment of left ventricular functions and myocardial iron load with tissue Doppler and speckle tracking echocardiography and T2* MRI in patients with β-thalassemia major. Echocardiogr, 34(3), 383-389.

Ito, T., Suwa, M., Kobashi, A., Nakamura, T., Miyazaki, S., Hirota, Y., 2000. Prediction of mean pulmonary wedge pressure using Doppler pulmonary venous flow variables in hypertrophic cardiomyopathy. Int J Cardiol, 76, 49-56.

Iwashima, Y., Horio, T., Kamide, K., Rakugi, H., Ogihara, T., Kawano, Y., 2008. Pulmonary venous flow and risk of cardiovascular disease in essential hypertension. J Hypertens, 26(4), 798-805.

Kryzhanovskii, S. A., Kolik, L. G., Tsorin, I. B., Ionova, E. O., Stolyaruk, V. N., Sorokina, A. V., Vititnova, M. B., Miroshkina, I. A., 2016. Evidence of Echocardiography Validity in Model Experiments on Small Animals. Bull Exp Biol Med, 161(3), 434-438.

Murakami, M., Niwa, H., Kushikata, T., Watanabe, H., Hirota, K., Ono, K., Ohba, T., 2014. Inhalation Anesthesia Is Preferable for Recording Rat Cardiac Function Using an Electrocardiogram. Biol Pharm Bull, 37(5), 834-839.

Nguyen, T. D., Shingu, Y., Schwarzer, M., Schrepper, A., Doenst, T., 2013. The E-wave deceleration rate E/DT outperforms the tissue Doppler-derived index E/e' in characterizing lung remodeling in heart failure with preserved ejection fraction. PLoS One, 8(12), e82077.

Oláh, A., Mátyás, C., Kellermayer, D., Ruppert, M., Barta, B. A., Sayour, A. A., Török, M., Koncsos, G., Giricz, Z., Ferdinandy, P., Merkely, B., Radovits, T., 2019. Sex Differences in Morphological and Functional Aspects of Exercise-Induced Cardiac Hypertrophy in a Rat Model. Front Physiol, 10, 889.

Ono, K., Masuyama, T., Yamamoto, K., Doi, R., Sakata, Y., Nishikawa, N., Mano, T., Kuzuya, T., Takeda, H., Hori, M., 2002. Echo doppler assessment of left ventricular function in rats with hypertensive hypertrophy. J Am Soc Echocardiogr, 15(2), 109-117.

Parajuli, P., Ahmed, A. A., 2021. Left Atrial Enlargement. In StatPearls. StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.

Pombo, J. F., Troy, B. L., Russell, R. O., Jr., 1971. Left ventricular volumes and ejection fraction by echocardiography. Circulation, 43(4), 480-490.

Rakha, S., Aboelenin, H. M., 2019. Left ventricular functions in pediatric patients with ten years or more type 1 diabetes mellitus: Conventional echocardiography, tissue Doppler, and two-dimensional speckle tracking study. Pediatr Diabetes, 20(7), 946-954.

Sanchez, P., Lancaster, J. J., Weigand, K., Mohran, S. E., Goldman, S., Juneman, E., 2017. Doppler Assessment of Diastolic Function Reflect the Severity of Injury in Rats With Chronic Heart Failure. J Card Fail, 23(10), 753-761.

Schiller, N. B., Shah, P. M., Crawford, M., DeMaria, A., Devereux, R., Feigenbaum, H., Gutgesell, H., Reichek, N., Sahn, D., Schnittger, I., 1989. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr, 2(5), 358-367.

Stypmann, J., Engelen, M. A., Troatz, C., Rothenburger, M., Eckardt, L., Tiemann, K., 2009. Echocardiographic assessment of global left ventricular function in mice. Lab Anim, 43(2), 127-137.

Walsh-Wilkinson, É., Drolet, M. C., Le Houillier, C., Roy È, M., Arsenault, M., Couet, J., 2019. Sex differences in the response to angiotensin II receptor blockade in a rat model of eccentric cardiac hypertrophy. PeerJ, 7, e7461.

Watson, L. E., Sheth, M., Denyer, R. F., Dostal, D. E., 2004. Baseline echocardiographic values for adult male rats. J Am Soc Echocardiogr, 17(2), 161-167.

Weytjens, C., Cosyns, B., D'Hooge, J., Gallez, C., Droogmans, S., Lahoute, T., Franken, P., Van Camp, G., 2006. Doppler myocardial imaging in adult male rats: reference values and reproducibility of velocity and deformation parameters. Eur J Echocardiogr, 7(6), 411-417.

Zhou, D., Huang, Y., Fu, M., Cai, A., Tang, S., Feng, Y., 2018. Prognostic value of tissue Doppler E/e' ratio in hypertension patients with preserved left ventricular ejection fraction. Clin Exp Hypertens, 40(6), 554-559.