Effects of salinity level on the activity of chloride cell and mucus secreting cell in the gill of the female Shortfin molly, Poecilia mexicana Steindachner, 1863 https://doi.org/10.12982/VIS.2021.016

Main Article Content

Sirirat Sathorn
Sinlapachai Senarat
Jes Kettratad
Gen Kaneko
Wannee Jiraungkoorskul
Koraon Wongkamhaeng

Abstract

Ovoviviparous poeciliid fishes have been relatively well studied in the unique reproductive strategy, but their osmoregulatory system largely remains unknown. In this study, we conducted a short-term (7 days) lab experiment to investigate the effect of different salinity levels from 0 (freshwater) to 50 ppt (mesosaline) on the number of chloride cells and mucus secreting cells of female Poecilia mexicana. Chloride cells were found at high density along the epithelial lamellae, whereas mucus secreting cells were also concentrated in the gill raker epithelium. More interestingly, the average density of chloride cells and the mucus secreting cell were significantly increased at high salinity levels (P < 0.05). While further validation by immunohistochemistry is warranted, integrative data from our study suggested that the potential function of the osmoregulatory mechanism/strategy was supported by chloride and mucus secreting cells of female P. mexicana gill.

Article Details

How to Cite
Sathorn, S. ., Senarat, S. ., Kettratad, J. ., Kaneko, G. ., Jiraungkoorskul, W. ., & Wongkamhaeng, K. . (2021). Effects of salinity level on the activity of chloride cell and mucus secreting cell in the gill of the female Shortfin molly, Poecilia mexicana Steindachner, 1863: https://doi.org/10.12982/VIS.2021.016. Veterinary Integrative Sciences, 19(2), 173–184. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/255812
Section
Research Articles

References

Berntssen, M.H.G., Kroglund, F., Rosseland, B.O., Wendelaar Bonga, S.E., 1997. Responses of skin mucous cells to aluminum exposure at low pH in Atlantic salmon (Salmo salar) smolts. Can. J. Fish. Aquat. 54, 1039–1045.

Brown, P., 1992. Gill chloride cell surface-area is greater in freshwater-adapted adult sea trout (Salmo trutta, L.) than those adapted to sea water. J. Fish Biol. 40, 481–484.

Caberoy, N.B., Quinitio G.F., 2000. Changes in Na+, K+-ATPase activity and gill chloride cell morphology in the grouper Epinephelus coioides larvae and juveniles in response to salinity and temperature. Fish Physiol. Biochem. 23, 83–94.

Carmona, R., García-Gallego, M., Sanz, A., Domezaín, A., Ostos-Garrido M.V., 2004. Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens. J. Fish Biol. 64, 553–566.

Dezfuli, B.S., Giari, L., Konecny, R., Jaeger, P., Manera, M., 2003. Immunohistochemistry, ultrastructure and pathology of gills of Abramis brama from Lake Mondsee, Austria, infected with Ergasilus sieboldi (Copepoda). Dis. Aquat. Organ. 53, 257–262.

Dietrich, D.R., Krieger, H.O., 2009. Histological Analysis of Endocrine Disruptive Effects in Small Laboratory Fish. John Wiley & Sons, New Jersey.

Englund, R.E., 1999. The impacts of introduced poeciliid fish and Odonata on the endemic Megalagrion (Odonata) damselflies of Oahu Island, Hawaii. J. Insect Conserv. 3, 225–243.

Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97–177.

Fernandes, M.N., Perna-Martins S.A., Moron, S.E., 1998. Chloride cells apical surface changes in gill epithelia of the armoured catfish, Hypostomus plecostomus L. during exposure to distilled water. J. Fish Biol. 52, 844–849.

Fernandes, M.N., Perna-Martins, S.A., 2002. Chloride cells responses to long-term exposure to distilled and hard water in the Gill of the armoured catfish, Hypostomus plecostomus (Loricariidae). Acta Zool. 83, 321–328.

Fielder, D.S., Allan, G.L., Pepperall, D., Pankhurst P.M., 2007. The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquacult. 272, 656–666.

Flik, G, Wendelaar Bonga, S.E., Fenwick, J.C., 1984. Ca2+dependent phosphatase and Ca2+dependent ATPase activities in plasma membranes of eel gill epithelium - II. Evidence for transport high-affinity Ca2+ATPase. Comp. Biochem. Physiol. B. 79, 9–16.

Franklin, G.E., 1990. Surface ultrastructure changes in the gills of sockeye salmon (Teleostei: Oncorhynchus nerka) during seawater transfer: comparison of successful and unsuccessful seawater adaptation. J. Morphol. 206, 13–23.

Garcia, A.B., Partridge, G., Flik, G., Roques, J.A.C. Roques., Abbink, W. 2015. Ambient salinity and osmoregulation, energy metabolism and growth in juvenile yellowtail kingfish (Seriola lalandi Valenciennes 1833) in a recirculating aquaculture system. Aquac. Res. 46: 2789-2797.

Ghahremanzadeh, Z., Namin, J.I., Bani, A., Hallajian, A., 2014. Cytological comparison of gill chloride cells and blood serum ion concentrations in kutum (Rutilus frisii kutum) spawners from brackish (Caspian Sea) and fresh water (Khoshkrood River) environments. Arch. Polish Fish. 22, 189–196.

Goss, G.G., Perry, S.F., Fryer, J.N., Laurent, P., 1998. Gill morphology and acid–base regulation in freshwater fishes. Comp. Biochem. Physiol. A. 119, 107–115.

Güner, Y., Özden, O., Çagirgan, H., Altunok, M., Kizak. V., 2005. Effects of salinity on the osmoregulatory functions of the gills in Nile tilapia (Oreochromis niloticus). Turk. J. Vet. Anim. Sci. 29, 1259-1266.

Handy, R.D., Eddy, F.B., 1991. The absence of mucus on the secondary lamellae of unstressed rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Biol. 38, 153–155.

Laurent, P., Dunel, S., 1980. Morphology of gill epithelia in fish. Am. J. Physiol. 238, 147–159.

Laurent, P., 1984. Internal morphology of the gill. In: Hoar, W.S., Randall, D.J. (Eds.), Fish Physiology, vol. X, Academic Press, Orlando, pp. 73–183.

Laurent, P., Hebibi, N., 1989. Gill morphometry and fish osmoregulation. Can. J. Zool. 67, 3055–3063.

Laurent, P., Dunel-Erb, S., Chevalier, C., Lignon, J., 1994a. Gill epithelial cell kinetics in a freshwater teleost, Oncorhynchus mykiss during adaptation to ion-poor water and hormonal treatment. Fish Physiol. Biochem. 3, 353–370.

Laurent, P., Goss, G.G., Perry, S.F., 1994b. Proton pumps in fish gill pavement cells? Arch. Int. Physiol. Biochim. 102, 77–79.

Ledy, K., Giamberini, L., Pihan, J.C., 2003. Mucous cell responses in gill and skin of brown trout Salmo trutta fario in acidic, aluminium-containing stream water. Dis. Aquat. Org. 56, 235–240.

Lima, R.N., Kültz, D., 2004. Laser scanning cytometry and tissue microarray analysis of salinity effects on killifish chloride cells. J. Exp. Biol. 207, 1729–1739.

Lin Y.M., Chen C.N., Lee T.H., 2003. The expression of gill Na, K-ATPase in milkfish Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp. Biochem. Physiol. 135, 489-497.

Martı´nez-A´ lvarez, R.M, Hidalgo, M.C., Domezain, A., Morales, A.E., Garcı´a-Gallego, M., Sanz, A., 2002. Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. J. Exp. Biol. 205, 3699–3706.

McCahon, C.P., Pascoe, D., Kavanagh, M., 1987. Histochemical observations on the salmonids Salmo salar L. and Salmo trutta L. and the ephemeropterans Baetis rhodani (Pict.) and Ecdyonurus venosus (Fabr.) following a simulated episode of acidity in an upland stream. Hydrobiol. 153, 3–12.

Moghadam, M.S., Abtahi, B., Khorjestan, M. and Bitaab. 2013. Salinity tolerance and gill histopathological alterations in Liza aurata Risso, 1810 (Actinopterygii: Mugilidae) fry. Ital J Zool, 80. 503-509.

Neurasteh, N., Setorki, M., Tehranifard, A., Moshfegh, A., 2017. Effects of salinity and plasma prolactin on chloride cells in the gill of Chalcalburnus chalcoides. J. Aqua. Anim. Health. 3, 11-21.

Perry, S.F., Wood, C.M., 1985. Kinetics of brachial calcium uptake in the rainbow trout: effects of acclimation to various external calcium levels. J. Exp. Biol. 116, 411–433.

Perry, S.F., 1997. The chloride cell: structure and function in the gills of freshwater fishes. Annu. Rev. Physiol. 59, 325–347.

Pisam, M., Rambourg, A., 1991. Mitochondria-rich cells in the gill epithelium of teleost fishes: an ultrastructural approach. Int. Rev. Cytol. 130, 191–232.

Pisam M., Moal C.L., Auperin B., Prunet P., Rambourg A., 1995. Apical structures of “mitochondria-rich” and cells in euryhaline fish gill: Their behavior in various living conditions. Anat. Rec. 241, 13–24.

Powell, M.D., Perry, S.F., 1997. Respiratory and acid-base disturbances in rainbow trout blood during exposure to chloramine-T under hypoxia and hyperoxia. J. Fish Biol. 50, 418–428.

Powel, M.D., 2007. Respiration in infectious and non-infectious gill diseases. In: Fernandes, M.N. Glass, M.L., Rantin, F.T., Kapoor, B.G. (Eds.), Fish Respiration and Environment Enfield, Science Publisher, New Hampshire, pp. 317–339.

Presnell, J.K., Schreibman, M.P., 1997. Humason’s Animal Tissue Techniques, 5th ed. Johns Hopkins University Press: USA.

Roberts, S.D., Powell, M.D., 2003. Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A. 134, 525–537.

Roberts, S.D., Powell, M.D., 2005. The viscosity and glycoprotein biochemistry of salmonid mucus varies with species, salinity and the presence of amoebic gill disease. J. Comp. Physiol. B. 175, 1–11.

Sakuragui, M.M., Sanches, J.R., Fernandes, M.N., 2003. Gill chloride cell proliferation and respiratory responses to hypoxia of the neotropical erythrinid fish Hoplias malabaricus. J. Comp. Physiol. B. 173, 309–317.

Senarat, S., Kettretad, J., Poolprasert, P., Tipdomrongpong, S., Plumley, F.G., Jiraungkoorskul, W. 2018. Health status in wild and captive Rastrelliger brachysoma from Thailand: Histopathology. Songklanakarin J. Sci. Technol. 40, 1090–1097.

Shephard, K.L., 1989. The effect of mucus and mucilaginous materials on ion distributions at epithelial surfaces. In: Chantler, E., Ratcliffe, N.A. (Eds.), Mucus and Related Topics, Cambridge, Company of Biologist Limited, pp. 123–130.

Singh, A.K., Banerjee, T.K., 2008. Toxic effects of sodium arsenate (Na2HAsO4.7H2O) on the skin epidermis of air-breathing catfish Clarias batrachus (L.). Veterinarski Arhiv. 78, 73–88.

Smith, S.A., Newman, S.J., Coleman, M.P. and Alex, C. 2018. Characterization of the histologic appearance of normal gill tissue using special staining techniques. J Vet Diagn Invest. 30, 688–698.

Sturla, M., Masini, M.A., Prato, P., Grattarola, C., 2001. Mitochondria-rich cells in gills and skin of an African lungfish, Protopterus annectens. Cell Tissue Res. 303, 351–358.

Suvarna, K.S., Layton, J.D., 2013. Bancroft Bancroft’s Theory and Practice of Histological Techniques. 7th ed. Canada, Elsevier. p. 654.

Uchida, K., Kaneko, T., 1996. Enhanced chloride cell turnover in the gills of chum salmon fry in seawater. Zool. Sci. 13, 655–660.

Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S., Hirano, T., 2000. Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool. Sci. 17, 149–160.

Wilson, J.M., Bunte, R.M., Carty, A.J., 2009. Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J Am. Assoc. Lab Anim. Sci. 48, 785–789.

Wong, C.K.C., Chan, D.K.O., 1999. Effects of cortisol on chloride cells in the gill epithelium of Japanese eel, Anguilla japonica. J. Endocrinol. 168, 185–192.