Early determination of fetal sex in singleton pregnant ewes by real-time polymerase chain reaction and ultrasonography, a comparative study https://doi.org/10.12982/VIS.2022.021

Main Article Content

Karar Yaser Hussain
Abbas Fadhil Daham

Abstract

This study aimed to compare the efficiency of real-time polymerase chain reaction (PCR) and ultrasonography in fetal sexing of early singleton pregnant ewes. Forty-five ewes were examined using ultrasonography to confirm singleton pregnancies and to diagnose the sex of the conceptus. Blood samples were collected from all tested ewes for SRY and AMLX detection in circulating cell-free fetal DNA of these maternal blood specimens using real-time PCR. The definite sex of the fetuses was confirmed by the true sex of offspring after birth. The total percentages of correctly diagnosed cases in both diagnostic techniques, male and female fetuses, and the percentages of true fetal sex diagnosis regarding the gestation periods of tested animals were counted and compared. The results demonstrate the superiority of real-time PCR in accurate diagnosis compared to ultrasound in all the tested parameters. The total percentage of fetal sex diagnostic technique accuracy was 95.55% (43/45) and 48.89% (22/45) for real-time PCR and ultrasonography, respectively. The percentages of the accuracy of detected male and female fetuses were 38.46% (10/26) and 63.16% (12/19), and 92.31% (24/26) and 100% (19/19) for ultrasonography and real-time PCR, respectively. The accuracy of fetal sexing was 66.66% (6/9), 42.85% (3/7), 36.36% (4/11), 50% (9/18), and 88.89% (8/9), as well as 85.71% (6/7), 100% (11/11), and 100% (18/18) in the gestation periods of 50–55, 56–60, 61–65, and 66–70 days for ultrasonography and real-time PCR, respectively. In conclusion, we assessed the potential of early fetal sex diagnosis in singleton pregnant ewes by real-time PCR and ultrasonography, identifying the significant superiority of real-time PCR

Downloads

Download data is not yet available.

Article Details

How to Cite
Yaser Hussain, K. ., & Fadhil Daham, A. . (2022). Early determination of fetal sex in singleton pregnant ewes by real-time polymerase chain reaction and ultrasonography, a comparative study: https://doi.org/10.12982/VIS.2022.021. Veterinary Integrative Sciences, 20(2), 267–277. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/256151
Section
Research Articles

References

Abdulla, A.K., Daham, A.F., Hassooni, F.K., and Al-Delemi, D.H.J., 2020. Early diagnosis of fetal sex in Arabian camel (Camelus dromedaries) by using polymerase chain reaction. Eurasia J Biosci. 14,1, 2333-2337.

Ali A., 2004. Effect of gestational age and fetal position on the possibility and accuracy of ultrasonographic fetal gender determination in dairy cattle. Reprod Domest Anim. 39 167 190–194.

Allen Lun, F.M., Chiu, R.W., Chan, K.C., Yeung Leung, T., Kin Lau, T., Dennis Lo, Y.M., 2017. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 54, 1664-72.

Aguiar Filho, C.R., Freitas Neto, L.M.; Santos, M.H.B.; Neves, J.P.,Lima, P.F.; Oliveira M.A.L., 2010. Transrectal ultrasound to identify the fetal sex of goats (In Portuguese). Ciência Animal. 1,1, 125-130.

Amer, H. A., 2010. Ultrasonographic assessment of early pregnancy diagnosis, fetometry and sex determination in goats. Anim Reprod Sci. 117, 226–231.

Arashiro, E.K.N., Ungerfeld, R., Clariget, R.P., Pinto, P.H.N., Balaro, M.F.A., Bragança, G.M., Riberio, L.S.R., da Fonseca, J.F., Brandao, F.Z., 2018. Early pregnancy diagnosis in ewes by subjective assessment of luteal vasularization using colour Doppler ultrasonography. Theriogenology. 106, 247-252.

Asadpour, R., Asadi, M.H., Jafari –Joozani, R. and Hamidian, G.H., 2015. Ovine fetal sex determination using circulating cell-free fetal DNA (ccffDNA) and cervical mucus secretions. Asian Pac J Reprod. 4,1, 65-69.

Bischoff, F.Z., Sinacori, M.K., Dang, D.D., Marquez-Do, D., Horne, C., Lewis, D.E. and Simpson, J.L., 2002. Cell-free fetal DNA and intact fetal cells in maternal blood circulation: implications for firrst and second trimester non-invasive prenatal diagnosis. Hum Reprod Update. 8,6, 493-500.

Dal, G.E., Enginler, S.O., Baykal, K. and Sabunca, A., 2019. Early pregnancy diagnosis by semiquantitative evaluation of luteal vascularity using power Doppler ultrasonography in sheep. Acta Vet. Brno. 88, 19–23.

D’Aversa, E., Breveglieri, G., Pellegatti, P., Guerra, G., Gambari, R. and Borgatt, M., 2018. Non-invasive fetal sex diagnosis in plasma of early weeks pregnants using droplet digital PCR. Mol Med. 24:14.

Dervishi, E., Sanchez, P., Alabart, J.L., Cocero, M.J, Folch, J. and Calvo, J.H., 2011. A Suitable Duplex PCR for Ovine Embryo Sex and Genotype of PrnP Gene Determination for MOET Based Selection Programmes E. Reprod Domest Anim. 46, 999–1003.

Drury, S., Hill, M., Chitty, L.S., 2016. Cell-free fetal DNA testing for prenatal diagnosis. Adv Clin Chem. 76, 1–35.

Erdogan, G. Ultrasonic Assessment During Pregnancy in Goats – A Review., 2012. Reprod. Domest. Anim. 47, 157–163.

Grzybowski, G., Prusak, B., Romaniuk, B., 2006. A novel variant of the amelogenin gene (AMEL-X) in cattle and its implications for sex determination. Anim Sci Pap Rep. 24,2, 111-118.

Kadivar, A., Hassanpour, H., Mirshokraei, P., Azari, M., Hosseini, K.H., Karami, A., 2013. Detection and quantification of cell-free fetal DNA in ovine maternal plasma; use it to predict fetal sex. Theriogenology. 79, 995-1000.

Kashimada, K. and Koopman, P., 2010. Sry: the master switch in mammalian sex determination. Development. 137, 3921-3930.

King, V., Goodfellow, P.N., Pearks, Wilkerson, A.J., Johnson, W.E., O'Brien, S.J., and Pecon-Slattery, J., 2007.Evolution of the Male-Determining Gene SRY Within the Cat Family Felidae. Genetics. 175, 1855–1867.

Lo, Y.M., N. Corbetta, P.F. Chamberlain, V. Rai, I. L. Sargetn, and C.W. Redman., 1997. Presence of fetal DNA in maternal plasma and serum. Lancet. 350, 485–487.

Miura, K., Higashijima, A., Shimada, T., Shoko, M., Yamasaki, K., Abe, S., Jo, O., Kinoshita, A., Yoshida, A., Yoshimura, S., Niikawa, N., Yoshiura, K., and Masuzaki, H., 2011. Clinlcal application of fetal sex determination using cell-free fetal DNA in pregnant carriers of X-linked genetic disorders. J Hum Genet. 56, 296-299.

Neto, L.M., Santos, M.H., Aguiar, Filho, C.R., Almeida Irmão, J.M., Cavalcanti Caldas, E.L., Neves, J.P., Lima, P.F., Lemos de Oliveira, M.A., 2010. Ultrasonographic fetal sex identification in pregnant sheep derived from natural mating and embryo transfer. J Reprod Dev. 56,347–350.

Paula, N.R.O., Cruz, J.F.; Lopes Júnior, E.S., Teixeira, D.I.A., Lima-Verde, J.B., Rondina, D., Freitas, V.J.F. 2003. Pregnancy diagnosis in Saanen goats using the Doppler effect and real-time ultrasound. Rev Bras Med Vet.10,3,166-169. (In Portuguese)

Pfeiffer, I., Brenig, B., 2005. X- and Y-chromosome specific variants of amelogenin gene allow sex determination in sheep (Ovis arie) and European red deer (Cervus elaphus). BMC Genet. 16,6.

Quirino, C.R., Leal, S.R., daSilva Fontes, R., Marques, V.C.L., Matos, L.F., Filho, G.A.D.S., 2010. In: 9th World Congresson Genetics Applied to Livestock Production(WCGALP), Leipzig, Germany; August, 1-6.

Ramos, E.S., 2006. Cell-free fetal DNA in maternal plasma and non-invasive prenatal diagnosis. Rev Lat Am Enfermagem. 14,6, 964-967.

Reichenbach, H.D., Santos, M.H., Oliveira, M.A., Meinecke-Tillmann, S., Buerstel, D.M., 2004. Fetal sexing in goat and sheep by ultrasonography. In: Santos MH, Oliveira MAL, Lima PF (eds), Diagnosis of Pregnancy in Goat and Sheep. Varela, Sao Paulo. 117–136. (In Portuguese).

Saberivand, S., A., Maasoumeh, M., Parisa, A., 2015. Sex determination of ovine embryos by SRY and amelogenin (AMEL) genes using maternal circulating cell free DNA. Anim. Reprod. Sci. http://dx.doi.org/10.1016/j.anireprosci.2015.10.011.

Santos, M. H. B., Aguiar Filho, C. R., Freitas Neto, L. M., Santos Junior, E. R., Freitas, V. J. F., Neves, J. P., Lima, P. F., and Oliveira, M. A. L., 2007. Sexing of Savana goat fetuses using transrectal ultrasonography. Medicina Veterinária. 1, 50–55.

Santos, R.S. D., Rocha, L.F.; Guimarães, A.S.B., Jesus, R.D.L.D.; Santana, A.L.A., Biscarde, C.E.A.; Bittencourt, R.F., Barbosa, L.P., 2018. Fetal sexing in small ruminants through visualization of the genital tubercle. Rev. Bras. de Saude e Prod. Anim..19, 4, 360-370.

Schiefer, W.C., 1980. Statistics for the biological sciences. 2nd ed. Addison. Wesley puplCoomp, Clifornia, London.

Tavares, K.C.S., Carneiro, I.S., Rios, D.B., Feltrin, C., Ribeiro, A.K.C., Gaudêncio-Neto, S., Martins, L.T., Aguiar, L.H., Lazzarotto, C.R., Calderón, C.E.M., Lopes, F.E.M., Teixeira, L.P.R., Bertolini, M. and Bertolini, L.R. 2016. A fast and simple method for the polymerase chain reaction-based sexing of livestock embryos. Genet Mol Res.. 15,1. gmr.15017476.

Tein, M.S., Lau, T.K., Haines, C.J., Leung, T.N., Poon, P.M., Wainscoat, J.S., Johnson, P.J., Chang, A.M., Hjelm, N.M. 1998. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for non-invasive prenatal diagnosis. Am J Hum Genet. 62, 768–75.

Wang, G., Cui, Q., Cheng, K., Zhang, X., Xing, G., and Wu, S., 2010. Prediction of fetal sex by amplification of fetal DNA present in cow plasma. J. Reprod. Dev. 56, 639-642.

Zhou, Y., Zhu, Z., Gao, Y.,Yuan, Y., Guo, Y., Zhou, L., Liao, K., Wang, J., Du, B., Hou, Y., Chen, Z., Chen, F., Zhang, H., Yu, C., Zhao, L., Lau, T.K., Jiang, F., Wang, W., 2015. Effects of maternal and fetal characteristics on cell-free fetal DNA fraction in maternal plasma. Reprod Sci. 22, 1429–35.