Association of FTH and EPOR gene polymorphisms with litter size traits in pigs https://doi.org/10.12982/VIS.2022.023

Main Article Content

Supamit Mekchay
Worrarak Norseeda
Nanthana Pothakam
Guisheng Liu
Tawatchai Teltathum
Korawan Sringarm
Watcharapong Naraballobh
Trisadee Khamlor
Patcharin Krutmuang

Abstract

Ferritin heavy chain (FTH) and erythropoietin receptor (EPOR) are responsible for the iron homeostasis and the erythropoiesis that correlate to the reproductive systems. This study aimed to examine an association of the porcine FTH and EPOR genes with litter size traits in Large White and Landrace pigs. The porcine FTH g.9537834G > A was significantly associated with the total number born (TNB) trait in these pig populations (p < 0.05). The porcine FTH g.9537855T > C was significantly associated with the TNB trait in Large White sows (p < 0.05) as well as the TNB and the number of birth alive (NBA) traits in Landrace sows (p < 0.05). The porcine EPOR g.70066473C > T was significantly associated with the TNB trait in Large White sows (p < 0.05) as well as the TNB, NBA, and the number of piglets weaned alive (NWA) traits in Landrace sows (p < 0.05). Moreover, the accumulated favorable alleles of these three SNPs were increasingly associated with TNB trait in Large White sows (p < 0.05) and TNB, NBA, and NWA traits in Landrace sows (p < 0.05). These findings suggest that porcine FTH and EPOR genes may contribute to the reproductive processes of pigs with regards to litter size and confirm the importance of these genes as candidate genes for improving litter size in pigs

Article Details

How to Cite
Mekchay, S. ., Norseeda, W. ., Pothakam, N. ., Liu, G. ., Teltathum, T. ., Sringarm, K. ., Naraballobh, W. ., Khamlor, T. ., & Krutmuang, P. . (2022). Association of FTH and EPOR gene polymorphisms with litter size traits in pigs : https://doi.org/10.12982/VIS.2022.023. Veterinary Integrative Sciences, 20(2), 291–308. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/256374
Section
Research Articles

References

An, X., Hou, J., Gao, T., Lei, Y., Li, G., Song, Y., Wang. J., Cao, B., 2015. Single-nucleotide polymorphisms g.151435C>T and g.173057T>C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats. Theriogenology 83, 1477-1483.

An, X., Song, Y., Bu, S., Ma, H., Gao, K., Hou, J., Wang, S., Lei, Z., Cao, B., 2016. Association of polymorphisms at the microRNA binding site of the caprine KITLG 3´-UTR with litter size. Sci. Rep. 6, 25691.

Baumann, R., Dragon, S., 2005. Erythropoiesis and red cell function in vertebrate embryos. Eur. J. Clin. Invest. 35, 2-12.

Bertani, G.R., Gladney, C.D., Johnson, R.K., Pomp, D., 2004. Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR: II. Anterior pituitary. J. Anim. Sci. 82, 32-40.

Blitek, A., Morawska, E., Ziecik, A.J., 2012. Regulation of expression and role of leukemia inhibitory factor and interleukin-6 in the uterus of early pregnant pigs. Theriogenology 78, 951-964.

Chan, J.J., Kwok, Z.H., Chew, X.H., Zhang, B., Liu, C., Soong, T.W., Yang, H., Tay, Y.A., 2018. FTH1 gene:pseudogene:microRNA network regulates tumorigenesis in prostate cancer. Nucleic Acids Res. 46, 1998-2011.

Chen, H.Y., Shen, H., Jia, B., Zhang, Y.S., Wang, X.H., Zeng, X.C., 2015. Differential gene expression in ovaries of Qira black sheep and Hetian sheep using RNA-Seq technique. PLoS One 10, e0120170.

Christenson, R.K., 1993. Ovulation rate and embryonic survival in Chinese Meishan and white crossbred pigs. J. Anim. Sci. 71, 3060-3066.

Coffman, L.G., Parsonage, D., D'Agostino, R.Jr., Torti, F.M., Torti, S.V., 2009. Regulatory effects of ferritin on angiogenesis. Proc. Natl. Acad. Sci. U S A. 106, 570-575.

Davis, M., Clarke, S., 2013. Influence of microRNA on the maintenance of human iron metabolism. Nutrients 5, 2611-2628.

Demir, R., Yaba, A., Huppertz, B., 2010. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 112, 203-214.

Dev, A., Byrne, S.M., Verma, R., Ashton-Rickardt, P.G., Wojchowski, D.M., 2013. Erythropoietin-directed erythropoiesis depends on serpin inhibition of erythroblast lysosomal cathepsins. J. Exp. Med. 210, 225-232.

Elias, A.A., Maki, Y., Matushewski, B., Nygard, K., Regnault, T.R.H., Richardson, B.S., 2017. Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with evidence for chronic hypoxia. Pediatr. Res. 82, 141-147.

Ferreira, C., Bucchini, D., Martin, M.E., Levi, S., Arosio, P., Grandchamp, B., Beaumont, C., 2000. Early embryonic lethality of H ferritin gene deletion in mice. J. Biol. Chem. 275, 3021-3024.

Ganz, T., 2018. Erythropoietin and iron-a conflicted alliance? Kidney Int. 94, 851-853.

González-Fernández, R., Martínez-Galisteo, E., Gaytán, F., Bárcena, J.A., Sánchez-Criado, J.E., 2008. Changes in the proteome of functional and regressing corpus luteum during pregnancy and lactation in the rat. Biol. Reprod. 79, 100-114.

Gray, C.A., Abbey, C.A., Beremand, P.D., Choi, Y., Farmer, J.L., Adelson, D.L., Thomas, T.L., Bazer, F.W., Spencer, T.E., 2006. Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus. Biol. Reprod. 74, 383-394.

He, L., Cohen, E.B., Edwards, A.P.B., Xavier-Ferrucio, J., Bugge, K., Federman, R.S., Absher, D., Myers, R.M., Kragelund, B.B., Krause, D.S., DiMaio, D., 2019. Transmembrane protein aptamer induces cooperative signaling by the EPO receptor and the cytokine receptor β-common subunit. iScience 17, 167-181.

He, L.C., Li, P.H., Ma, X., Sui, S.P., Gao, S., Kim, S.W., Gu, Y.Q., Huang, Y., Ding, N.S., Huang, R.H., 2017. Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs. Anim. Genet. 48, 48-54.

Hindmarsh, P.C., Geary, M.P., Rodeck, C.H., Jackson, M.R., Kingdom, J.C., 2000. Effect of early maternal iron stores on placental weight and structure. Lancet 356, 719-723.

Huang, H., Qiu, Y., Huang, G., Zhou, X., Zhou, X., Luo, W., 2019. Value of ferritin heavy chain (FTH1) expression in diagnosis and prognosis of renal cell carcinoma. Med. Sci. Monit. 25, 3700-3715.

Kertesz, N., Wu, J., Chen, T.H., Sucov, H.M., Wu, H., 2004. The role of erythropoietin in regulating angiogenesis. Dev. Biol. 276, 101-110.

Kieran, M.W., Perkins, A.C., Orkin, S.H., Zon, L.I., 1996. Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc. Natl. Acad. Sci. U S A. 93, 9126-9131.

Li, W., Garringer, H.J., Goodwin, C.B., Richine, B., Acton, A., VanDuyn, N., Muhoberac, B.B., Irimia-Dominguez, J., Chan, R.J., Peacock, M., Nass, R., Ghetti, B., Vidal, R., 2015. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PLoS One 10, e0117435.

Li, X., Kim, S.W., Do, K.T., Ha, Y.K., Lee, Y.M., Yoon, S.H., Kim, H.B., Kim, J.J., Choi, B.H., Kim, K.S., 2011. Analyses of porcine public SNPs in coding-gene regions by re-sequencing and phenotypic association studies. Mol. Biol. Rep. 38, 3805-3820.

Liu, R., Deng, D., Liu, X., Xiao, Y., Huang, J., Wang, F., Li, X., Yu, M., 2019. A miR-18a binding-site polymorphism in CDC42 3´UTR affects CDC42 mRNA expression in placentas and is associated with litter size in pigs. Mamm. Genome 30, 34-41.

Lombardero, M., Kovacs, K., Scheithauer, B.W., 2011. Erythropoietin: a hormone with multiple functions. Pathobiology 78, 41-53.

Makita, T., Hernandez-Hoyos, G., Chen, T.H., Wu, H., Rothenberg, E.V., Sucov, H.M., 2001. A developmental transition in definitive erythropoiesis: erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4. Genes Dev. 15, 889-901.

Mathew, D.J., Lucy, M.C., Geisert, R.D., 2016. Interleukins, interferons, and establishment of pregnancy in pigs. Reproduction 151, 111-122.

Muñoz, G., Ovilo, C., Estellé, J., Silió, L., Fernández, A., Rodriguez, C., 2007. Association with litter size of new polymorphisms on ESR1 and ESR2 genes in a Chinese-European pig line. Genet. Sel. Evol. 39, 195-206.

Nakano, M., Satoh, K., Fukumoto, Y., Ito, Y., Kagaya, Y., Ishii, N., Sugamura, K., Shimokawa, H., 2007. Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ. Res. 100, 662-669.

Norseeda, W., Liu, G., Teltathum, T., Sringarm, K., Naraballobh, W., Khamlor, T., Mekchay, S., 2021a. Association of non-sysnonymous SNP of IL17RA gene with litter size traits in Large White and Landrace pigs. Vet. Integr. Sci. 19, 391-405.

Norseeda, W., Liu, G., Teltathum, T., Supakankul, P., Sringarm, K., Naraballobh, W., Khamlor. T., Chomdej, S., Nganvongpanit, K., Krutmuang, P., Mekchay, S., 2021b. Association of IL-4 and IL-4R polymorphisms with litter size traits in pigs. Animals 11, 1154.

Ohneda, K., Yamamoto, M., 2002. Roles of hematopoietic transcription factors GATA-1 and GATA-2 in the development of red blood cell lineage. Acta Haematol. 108, 237-245.

Onteru, S.K., Fan, B., Du, Z.Q., Garrick, D.J., Stalder, K.J., Rothschild, M.F., 2012. A whole-genome association study for pig reproductive traits. Anim. Genet. 43, 18-26.

Pearson, P.L., Klemcke, H.G., Christenson, R.K., Vallet, J.L., 1998. Uterine environment and breed effects on erythropoiesis and liver protein secretion in late embryonic and early fetal swine. Biol. Reprod. 58, 911-918.

Pripwai, N., Mekchay, S., 2012. Haplotype analysis of ferritin heavy chain affects stillborn piglets on Large White X Landrace crossbred sows. J. Agric. Sci. 4, 62-70.

Ruscitti, P., Di Benedetto, P., Berardicurti, O., Panzera, N., Grazia, N., Lizzi, A.R., Cipriani, P., Shoenfeld, Y., Giacomelli, R., 2020. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci. Rep. 10, 12232.

Semenza, G.L., 2009. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology 24, 97-106.

Soheilykhah, S., Mojibian, M., Moghadam, M.J., 2017. Serum ferritin concentration in early pregnancy and risk of subsequent development of gestational diabetes: A prospective study. Int. J. Reprod. Biomed. 15, 155-160.

Tesfay, L., Huhn, A.J., Hatcher, H., Torti, F.M., Torti, S.V., 2012. Ferritin blocks inhibitory effects of two-chain high molecular weight kininogen (HKa) on adhesion and survival signaling in endothelial cells. PLoS One 7, e40030.

Trenhaile, M.D., Petersen, J.L., Kachman, S.D., Johnson, R.K., Ciobanu, D.C., 2016. Long-term selection for litter size in swine results in shifts in allelic frequency in regions involved in reproductive processes. Anim. Genet. 47, 534-542.

Vallet, J.L., Freking, B.A., Leymaster, K.A., Christenson, R.K., 2005. Allelic variation in the erythropoietin receptor gene is associated with uterine capacity and litter size in swine. Anim. Genet. 36, 97-103.

Vallet, J.L., Klemcke, H.G., Christenson, R.K., 2002. Interrelationships among conceptus size, uterine protein secretion, fetal erythropoiesis, and uterine capacity. J. Anim. Sci. 80, 729-737.

Vallet, J.L., Klemcke, H.G., Christenson, R.K., Pearson, P.L., 2003. The effect of breed and intrauterine crowding on fetal erythropoiesis on day 35 of gestation in swine. J. Anim. Sci. 81, 2352-2356.

Verardo, L.L., Silva, F.F., Lopes, M.S., Madsen, O., Bastiaansen, J.W.M., Knol, E.F., Kelly, M., Varona, L., Lopes, P.S., Guimaraes, S.E.F., 2016. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways. Genet. Sel. Evol. 48, 9.

Vočanec, D., Prijatelj, T., Debeljak, N., Kunej, T., 2019. Genetic variants of erythropoietin (EPO) and EPO receptor genes in familial erythrocytosis. Int. J. Lab. Hematol. 41, 162-167.

Walsh, P.S., Metzger, D.A., Higuchi, R., 2013. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 54, 134-139.

Wu, H., Lee, S.H., Gao, J., Liu, X., Iruela-Arispe, M.L., 1999. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126, 3597-3605.

Wu, P., Yang, Q., Wang, K., Zhou, J., Ma, J., Tang, Q., Jin, L., Xiao, W., Jiang, A., Jiang, Y., Zhu, L., Li, X., Tang, G., 2018. Single step genome-wide association studies based on genotyping by sequence data reveals novel loci for the litter traits of domestic pigs. Genomics 110, 171-179.

Yang, K.T., Lin, C.Y., Huang, H.L., Liou, J.S., Chien, C.Y., Wu, C.P., Huang, C.W., Ou, B.R., Chen, C.F., Lee, Y.P., Lin, E.C., Tang, P.C., Lee, W.C., Ding, S.T., Cheng, W.T., Huang, M.C., 2008. Expressed transcripts associated with high rates of egg production in chicken ovarian follicles. Mol. Cell. Probes 22, 47-54.

Zhang, L., Wang, L., Li, Y., Li, W., Yan, H., Liu, X., Zhao, K., Wang, L., 2011a. A substitution within erythropoietin receptor gene D1 domain associated with litter size in Beijing Black pig, Sus scrofa. Anim. Sci. J. 82, 627-632.

Zhang, L., Wang, L., Li, Y., Yan, H., Zhao, K., Wang, L., 2011b. Erythropoietin receptor gene (EPOR) polymorphisms are associated with sow litter sizes. Agric. Sci. China 10, 931-937.

Zhu, L.J., Bagchi, M.K., Bagchi, I.C., 1995. Ferritin heavy chain is a progesterone-inducible marker in the uterus during pregnancy. Endocrinology 136, 4106-4115.

Zolea, F., Battaglia, A.M., Chiarella, E., Malanga, D., De Marco, C., Bond, H.M., Morrone, G., Costanzo, F., Biamonte, F., 2017. Ferritin heavy subunit silencing blocks the erythroid commitment of K562 cells via miR-150 up-regulation and GATA-1 repression. Int. J. Mol. Sci. 18, 2167.