Molecular detection of Vibrio cholerae and Vibrio parahaemolyticus from healthy broilers and backyard chickens for the first time in Bangladesh- A preliminary study

Main Article Content

Soudiya Akter
Farah Zereen
Md. Saiful Islam
Md. Abdus Sobur
Md. Ismail Hossen
Mahbubul Pratik Siddique
Muhammad Tofazzal Hossain
Md. Tanvir Rahman


Many of the Vibrio spp. are major public health concerns globally. Vibrio cholerae and Vibrio parahaemolyticus are the etiology of pandemic and epidemic diarrhea and foodborne illness, respectively. Poultry has the potential to harbor pathogenic Vibrio spp., which can have a detrimental impact on public health if they are transmitted to humans. We, therefore, screened 54 cloacal swab samples from healthy chickens (broiler=27, backyard= 27) to detect V. cholerae and V. parahaemolyticus. Vibrio spp. were isolated and identified by culturing, biochemical tests, PCR, and antibiogram profiles were determined by disk diffusion method. By PCR, 29.63% (16/54; 95% CI: 19.14-42.83%) samples were positive for Vibrio spp., where backyard chickens had a significantly higher (p< 0.05) occurrence (44.44%; 27.59-62.69%) than broilers (14.82%; 95% CI: 5.92-32.48%). V. parahaemolyticus was found in 22.22% (6/27; 95% CI: 10.61-40.76%) of backyard chicken samples, which was significantly dominant (p< 0.05) than in broilers (0/27, 0%, 95% CI: 0.00-12.46%). In addition, V. cholerae was positive in 7.41% (2/27; 95% CI: 1.32-23.37%) of broiler, and 14.82% (4/27; 95% CI: 5.92-32.48%) of backyard chicken samples. The toxR gene was found in all V. cholerae isolates, suggesting the presence of other virulence genes, whereas no isolates of V. parahaemolyticus contained the tdh gene. Isolated Vibrio spp. had high to moderate resistance to tetracycline, azithromycin, erythromycin, and streptomycin. The occurrence of antibiotic-resistant V. cholerae and V. parahaemolyticus in broiler and backyard chickens is of public health concern because of the possibility of food chain contamination

Article Details

How to Cite
Akter, S. ., Zereen, F., Islam, M. S. ., Sobur, M. A., Hossen, M. I. ., Pratik Siddique, M. ., Tofazzal Hossain, M. ., & Rahman, M. T. . (2022). Molecular detection of Vibrio cholerae and Vibrio parahaemolyticus from healthy broilers and backyard chickens for the first time in Bangladesh- A preliminary study: Veterinary Integrative Sciences, 20(2), 431–442. Retrieved from
Research Articles


Akond, M.A., Alam, S., Hasan, S.M.R., Uddin, S.N., Shirin, M., 2008. Antibiotic resistance of Vibrio cholerae from poultry sources of Dhaka, Bangladesh. Advan. Biol. Res. 2, 60-67.

Albert, M.J., Neira, M., Motarjemi, Y., 1997. The role of food in the epidemiology of cholera. World Health Stat. Quart. 50, 111-118.

Altekruse, S.F., Bishop, R.D., Baldy, L.M., Thompson, S.G., Wilson, S.A., Ray, B.J., Griffin, P.M., 2000. Vibrio gastroenteritis in the US Gulf of Mexico region: the role of raw oysters. Epidemiol. Infect. 124, 489-495.

Baker-Austin, C., Oliver, J.D., Alam, M., Ali, A., Waldor, M.K., Qadri, F., Martinez-Urtaza, J., 2018. Vibrio spp. infections. Nat. Rev. Dis. Primers 4, 1-19.

Baker‐Austin, C., Stockley, L., Rangdale, R., Martinez‐Urtaza, J., 2010. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ. Microbiol. Rep. 2, 7-18.

Baker-Austin, C., Trinanes, J., Gonzalez-Escalona, N., Martinez-Urtaza, J., 2017. Non-cholera vibrios: the microbial barometer of climate change. Trends Microbiol. 25, 76-84.

Bauer, A.T., 1966. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 45, 149-158.

Brown, L.D., Cai, T.T., DasGupta, A., 2001. Interval estimation for a binomial proportion. Stat. Sci. 16, 101-117.

CDC, 2021. Cholera - Vibrio cholerae infection. Available online: (Accessed on January 1, 2022).

Chopra, I., Roberts, M., 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232-260.

Clinical and Laboratory Standards Institute (CLSI), 2018. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-eight Informational Supplement M100-S28. CLSI, Wayne, PA, USA.

Grimes, D.J., 2020. The Vibrios: Scavengers, Symbionts, and Pathogens from the Sea. Microb. Ecol. 80, 501-506.

Hackbusch, S., Wichels, A., Gimenez, L., Döpke, H., Gerdts, G., 2020. Potentially human pathogenic Vibrio spp. in a coastal transect: Occurrence and multiple virulence factors. Sci. Total Environ., 707, 136113.

Honda, T., Iida, T., 1993. The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysins. Rev. Med. Microbiol. 4, 106-113.

Hossain, M., Attia, Y., Ballah, F.M., Islam, M., Sobur, M., Ievy, S., Rahman, A., Nishiyama, A., Hassan, J., Rahman, M., 2021. Zoonotic Significance and Antimicrobial Resistance in Salmonella in Poultry in Bangladesh for the Period of 2011–2021. Zoonotic Dis. 1, 3-24.

Hossain, M.J., Islam, M.S., Sobur, M.A., Zaman, S.B., Nahar, A., Rahman, M., Rahman, M.T., 2020. Exploring Poultry Farm Environment for Antibiotic Resistant Escherichia coli, Salmonella spp., and Staphylococcus spp. Having Public Health Significance. J. Bangladesh Agril. Univ. 18, 615-622.

Hossain, M.T., Kim, E.Y., Kim, Y.R., Kim, D.G., Kong, I.S., 2012. Application of groEL gene for the species‐specific detection of Vibrio parahaemolyticus by PCR. Lett. Appl. Microbiol., 54, 67-72.

Hossain, M.T., Kim, Y.R., Kim, E.Y., Lee, J.M., Kong, I.S., 2013a. Detection of Vibrio cholerae and Vibrio vulnificus by duplex PCR specific to the groEL gene. Fish Sci. 79, 335-340.

Hossain, M.T., Kim, E.Y., Kim, Y.R., Kim, D.G., Kong, I.S., 2013b. Development of a groEL gene–based species‐specific multiplex polymerase chain reaction assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. J. Appl. Microbiol. 114, 448-456.

Hossain, M.T., Kim, Y.O., Kong, I.S., 2013c. Multiplex PCR for the detection and differentiation of Vibrio parahaemolyticus strains using the groEL, tdh and trh genes. Mol. Cell. Probes 27, 171-175.

Hossain, M.T., Kim, Y.R., Kong, I.S., 2014. PCR–restriction fragment length polymorphism analysis using groEL gene to differentiate pathogenic Vibrio species. Diagn. Microbiol. Infect. Dis. 78, 9-11.

Ievy, S., Islam, M., Sobur, M., Talukder, M., Rahman, M., Khan, M.F.R., Rahman, M.T., 2020. Molecular detection of avian pathogenic Escherichia coli (APEC) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns. Microorganisms 8, 1021.

Islam, M., Sobur, M., Rahman, S., Ballah, F.M., Ievy, S., Siddique, M.P., Rahman, M., Kafi, M., Rahman, M., 2021a. Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Migratory Birds Travelling to Bangladesh. Microb. Ecol. 83, 942–950.

Islam, M., Nayeem, M., Hasan, M., Sobur, M., Ievy, S., Rahman, S., Kafi, M., Ashour, H.M., Rahman, M., 2021b. Virulence Determinants and Multidrug Resistance of Escherichia coli Isolated from Migratory Birds. Antibiotics 10, 190.

Islam, M.S., Paul, A., Talukder, M., Roy, K., Sobur, M.A., Ievy, S., Nayeem, M.M.H., Rahman, S., Nazir, K.N.H., Hossain, M.T., Rahman, M.T., 2021c. Migratory birds travelling to Bangladesh are potential carriers of multi-drug resistant Enterococcus spp., Salmonella spp., and Vibrio spp. Saudi J. Biol. Sci. 28, 5963-5970.

Islam, M.S., Sabuj, A.A.M., Haque, Z.F., Pondit, A., Hossain, M.G., Saha, S., 2020. Seroprevalence and risk factors of avian reovirus in backyard chickens in different areas of Mymensingh district in Bangladesh. J. Adv. Vet. Anim. Res. 7, 546-553.

Ismail, E.M., Kadry, M., Elshafiee, E.A., Ragab, E., Morsy, E.A., Rizk, O., Zaki, M.M., 2021. Ecoepidemiology and Potential Transmission of Vibrio cholerae among Different Environmental Niches: An Upcoming Threat in Egypt. Pathogens 10, 190.

Jo, G.A., Kwon, S.B., Kim, N.K., Hossain, M.T., Kim, Y.R., Kim, E.Y., Kong, I.S., 2013. Species-specific duplex PCR for detecting the important fish pathogens Vibrio anguillarum and Edwardsiella tarda. Fish. Aquat. Sci. 16, 273-277.

Li, Y., Xie, T., Pang, R., Wu, Q., Zhang, J., Lei, T., Xue, L., Wu, H., Wang, J., Ding, Y., Chen, M., 2020. Food-Borne Vibrio parahaemolyticus in China: Prevalence, Antibiotic Susceptibility, and Genetic Characterization. Front. Microbiol. 11, 1670.

LPSN, 2021. List of Prokaryotic names with Standing in Nomenclature. Available online: (Accessed on January 1, 2022).

Lutz, C., Erken, M., Noorian, P., Sun, S., McDougald, D., 2013. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae. Front. Microbiol. 4, 375.

Maje, M.D., Kaptchouang Tchatchouang, C.D., Manganyi, M.C., Fri, J., Ateba, C.N., 2020. Characterization of Vibrio Species from Surface and Drinking Water Sources and Assessment of Biocontrol Potentials of Their Bacteriophages. Int. J. Microbiol. 2020, 8863370.

Neogi, S.B., Chowdhury, N., Asakura, M., Hinenoya, A., Haldar, S., Saidi, S.M., Kogure, K., Lara, R.J., Yamasaki, S., 2010. A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. Lett. Appl. Microbiol., 51, 293-300.

Parsot, C., Mekalanos, J.J., 1990. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response. Proc. Natl. Acad. Sci. 87, 9898-9902.

Parvin, I., Shahid, A.S.M.S.B., Das, S., Shahrin, L., Ackhter, M.M., Alam, T., Khan, S.H., Chisti, M.J., Clemens, J.D., Ahmed, T., Sack, D.A., 2021. Vibrio cholerae O139 persists in Dhaka, Bangladesh since 1993. PLOS Negl. Trop. Dis. 15, e0009721.

Rafique, R., Rashid, M.U., Monira, S., Rahman, Z., Mahmud, M.D., Mustafiz, M., Saif-Ur-Rahman, K.M., Johura, F.T., Islam, S., Parvin, T., Bhuyian, M., 2016. Transmission of infectious Vibrio cholerae through drinking water among the household contacts of cholera patients (CHoBI7 trial). Front. Microbiol. 7, 1635.

Rahman, M., Sobur, M., Islam, M., Ievy, S., Hossain, M., El Zowalaty, M.E., Rahman, A.M.M., Ashour, H.M., 2020. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms, 8, 1405.

Roy, K., Islam, M.S., Paul, A., Ievy, S., Talukder, M., Sobur, M.A., Ballah, F.M., Khan, M.S.R., Rahman, M.T., 2021. Molecular detection and antibiotyping of multi‐drug resistant Enterococcus faecium from healthy broiler chickens in Bangladesh. Vet. Med. Sci. 8, 200-210.

Sabuj, A.A.M., Mahmud, T., Barua, N., Rahman, M.A., Islam, M.S., Bary, M.A., 2019. Passive surveillance of clinical poultry diseases in an Upazila Government Veterinary Hospital of Bangladesh. Afr. J. Microbiol. Res. 13, 632-639.

Shanker, S.I.V.A.R.A.J., Rosenfield, J.A., Davey, G.R., Sorrell, T.C., 1982. Campylobacter jejuni: incidence in processed broilers and biotype distribution in human and broiler isolates. Appl. Environ. Microbiol. 43, 1219-1220.

Siddique, A.B., Moniruzzaman, M., Ali, S., Dewan, M., Islam, M.R., Islam, M., Amin, M.B., Mondal, D., Parvez, A.K., Mahmud, Z.H., 2021. Characterization of Pathogenic Vibrio parahaemolyticus Isolated From Fish Aquaculture of the Southwest Coastal Area of Bangladesh. Front. Microbiol. 12, 266.

Sobur, M., Islam, M., Haque, Z.F., Orubu, E.S.F., Toniolo, A., Choudhury, M. and Rahman, M., 2021. Higher seasonal temperature enhances the occurrence of methicillin resistance of Staphylococcus aureus in house flies (Musca domestica) under hospital and environmental settings. Folia. Microbiol. 67, 109-119.

Talukder, M., Islam, M.S., Ievy, S., Sobur, M.A., Ballah, F.M., Najibullah, M., Rahman, M.B., Rahman, M.T., Khan, M.F.R., 2021. Detection of multidrug resistant Salmonella spp. from healthy and diseased broilers having potential public health significance. J. Adv. Biotechnol. Exp. Ther. 4, 248-255.

Tawyabur, M., Islam, M., Sobur, M., Hossain, M., Mahmud, M., Paul, S., Hossain, M.T., Ashour, H.M., Rahman, M., 2020. Isolation and Characterization of Multidrug-Resistant Escherichia coli and Salmonella spp. from Healthy and Diseased Turkeys. Antibiotics, 9, 770.

Uddin, M.A., Ullah, M.W., Noor, R., 2012. Prevalence of Vibrio cholerae in human-, poultry-, animal excreta and compost samples. Stamford j. microbiol. 2, 38-41.

Urmi, M.R., Ansari, W.K., Islam, M.S., Sobur, M.A., Rahman, M., Rahman, M.T., 2021. Antibiotic resistance patterns of Staphylococcus spp. isolated from fast foods sold in different restaurants of Mymensingh, Bangladesh. J. Adv. Vet. Anim. Res. 8, 274-281.

Valeru, S.P., Wai, S.N., Saeed, A., Sandström, G., Abd, H., 2012. ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii. BMC Res. Notes 5, 1-8.

Wang, X.H., Leung, K.Y., 2000. Biochemical characterization of different types of adherence of Vibrio species to fish epithelial cells. Microbiology 146, 989-998.

Zhang, Y., Hu, L., Osei-Adjei, G., Zhang, Y., Yang, W., Yin, Z., Lu, R., Sheng, X., Yang, R., Huang, X., Zhou, D., 2018. Autoregulation of ToxR and its regulatory actions on major virulence gene Loci in Vibrio parahaemolyticus. Front. Cell. Infect. Microbiol. 8, 291