Molecular characterization of porcine parvovirus 1 based on partial VP2 gene in the ovaries of Thai pigs https://doi.org/10.12982/VIS.2022.035

Main Article Content

Prayuth Saekhow
Chayaphon Sriphannam
Panuwat Yamsakul

Abstract

Porcine parvovirus 1 (PPV1) is the causative agent of swine reproductive disease, particularly in naive gilts and sows. This study aimed to investigate the prevalence and genetic diversity of the partial nucleotide sequence of the VP2 gene and to compare the substitution of amino acid residues that affect relevant biological properties. The prevalence of PPV1 was found to be 12% (12/100) when the viral genome was detected using polymerase chain reaction (PCR). Determination of the genetic diversity of a partial nucleotide sequence of the VP2 gene through phylogenetic analysis indicated that a single cluster of Thai PPV1s was allocated on the phylogenetic tree. According to a comparison of the substitution of amino acid residues that affected the biological properties at 378, 383, 365, and 436 of the VP2 capsid protein between the 12 Thai PPV1s, the Kresse strain (a surrogate pathogenic strain), and the NADL-2 strain (a surrogate nonpathogenic strain). It was determined that the substitution of amino acid residues at 378, 383, and 436 of 12 Thai PPV2s was identical to those of the Kresse strains. The substitution of amino acid residues at 436 of the 12 Thai PPV1s was similar to that of a proven virulent strain in vivo. Additionally, substituting amino acid residue at 320 of the VP2 capsid protein revealed that seven Thai PPV1s were associated with isoleucine PPV1s and identical to that of both surrogate strains, whereas five Thai PPV1s were associated with threonine. This outcome was similar to what had been deposited in GenBank. Our data suggest that Thai PPV1s isolated from the ovaries of pigs raised in Chiang Mai may have originated from the Kresse strains. Based on a change of VP2 capsid protein that occurred amongst the substitution amino acid residue at 320 of the VP2 capsid protein, viruses found in this region were determined to be similar to those found in other areas. This was likely because the viruses had adapted to evade the immune systems of animals.

Article Details

How to Cite
Saekhow, P. ., Sriphannam, C. ., & Yamsakul, P. . (2022). Molecular characterization of porcine parvovirus 1 based on partial VP2 gene in the ovaries of Thai pigs: https://doi.org/10.12982/VIS.2022.035. Veterinary Integrative Sciences, 20(2), 475–488. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/258167
Section
Research Articles

References

Bachanek-Bankowska, K., Di Nardo, A., Wadsworth, J., Mioulet, V., Pezzoni, G., Grazioli, S., Brocchi, E., Kafle, S.C., Hettiarachchi, R., Kumarawadu, P.L., 2018. Reconstructing the evolutionary history of pandemic foot-and-mouth disease viruses: the impact of recombination within the emerging O/ME-SA/Ind-2001 lineage. Sci. Rep. 8, 1-11.

Bergeron, J., Hebert, B., Tijssen, P., 1996. Genome organization of the Kresse strain of porcine parvovirus: identification of the allotropic determinant and comparison with those of NADL-2 and field isolates. J. Virol. 70, 2508-2515.

Cadar, D., Dán, Á., Tombácz, K., Lőrincz, M., Kiss, T., Becskei, Z., Spînu, M., Tuboly, T., Cságola, A. 2012. Phylogeny and evolutionary genetics of porcine parvovirus in wild boars. Infect. Genet. Evol. 12, 1163-1171.

Chung, H.C., Nguyen, V.G., Huynh, T.M., Park, Y.H., Park, K.T., Park, B.K., 2020. PCR-based detection and genetic characterization of porcine parvoviruses in South Korea in 2018. BMC. Vet. Res. 16, 113.

Cooke, J.N., Westover, K.M., 2008. Serotype-specific differences in antigenic regions of foot-and-mouth disease virus (FMDV): a comprehensive statistical analysis. Infect. Genet. Evol. 8, 855-863.

Cotmore, S.F., Agbandje-McKenna, M., Canuti, M., Chiorini, J.A., Eis-Hubinger, A.-M., Hughes, J., Mietzsch, M., Modha, S., Ogliastro, M., Pénzes, J.J., Pintel, D.J., Qiu, J., Soderlund-Venermo, M., Tattersall, P., Tijssen, P., ICTV Report, C., 2019. ICTV Virus Taxonomy Profile: Parvoviridae. J. Gen. Virol. 100, 367-368.

Deka, D., Barman, N.N., Deka, N., Batth, B.K., Singh, G., Singh, S., Agrawal, R.K., Mukhopadhyay, C.S., Ramneek, 2021. Sero-epidemiology of porcine parvovirus, circovirus, and classical swine fever virus infections in India. Trop. Anim, Health. Prod. 53, 180.

Ellis, J., Bratanich, A., Clark, E., Allan, G., Meehan, B., Haines, D., Harding, J., West, K., Krakowka, S., Konoby, C., 2000. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome. J. Vet. Diagn. Invest. 12, 21-27.

Eterpi, M., McDonnell, G., Thomas, V., 2009. Disinfection efficacy against parvoviruses compared with reference viruses. J. Hosp. Infect. 73, 64-70.

Fernandes, S., Boisvert, M., Tijssen, P., 2011. Genetic elements in the VP region of porcine parvovirus are critical to replication efficiency in cell culture. J.Virol. 85, 3025-3029.

Garcia-Camacho, L.A., Vargas-Ruiz, A., Marin-Flamand, E., Ramírez-Álvarez, H., Brown, C., 2020. A retrospective study of DNA prevalence of porcine parvoviruses in Mexico and its relationship with porcine circovirus associated disease. Microbiol. Immunol. 64, 366-376.

Gradil, C.M., Joo, H.S., Molitor, T.W., 1990. Persistence of porcine parvovirus in swine infected in utero and followed through maturity. Zentralbl. Veterinarmed. B. 37, 309-316.

Grenfell, B.T., Pybus, O.G., Gog, J.R., Wood, J.L., Daly, J.M., Mumford, J.A., Holmes, E.C., 2004. Unifying the epidemiological and evolutionary dynamics of pathogens. Science. 303, 327-332.

Guo, C., Zhong, Z., Huang, Y., 2014. Production and immunogenicity of VP2 protein of porcine parvovirus expressed in Pichia pastoris. Arch. Virol. 159, 963-970.

Haydon, D.T., Bastos, A.D., Knowles, N.J., Samuel, A.R., 2001. Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics. 157, 7-15.

Hua, T., Zhang, D., Tang, B., Chang, C., Liu, G., Zhang, X., 2020. The immunogenicity of the virus-like particles derived from the VP2 protein of porcine parvovirus. Vet. Microbiol. 248, 108795.

Joo, H., Donaldson-Wood, C., Johnson, R., Campbell, R., 1977. Pathogenesis of porcine parvovirus infection: pathology and immunofluorescence in the foetus. J. Comp. Path. 87, 383-391.

Joo, H.S., Donaldson-Wood, C.R., Johnson, R.H., 1976. Observations on the pathogenesis of porcine parvovirus infection. Arch. Virol. 51, 123-129.

Kamstrup, S., Langeveld, J., Bøtner, A., Nielsen, J., Schaaper, W.M., Boshuizen, R.S., Casal, J.I., Højrup, P., Vela, C., Meloen, R., 1998. Mapping the antigenic structure of porcine parvovirus at the level of peptides. Virus Res. 53, 163-173.

Kim, J., Choi, C., Chae, C., 2003. Pathogenesis of postweaning multisystemic wasting syndrome reproduced by co-infection with Korean isolates of porcine circovirus 2 and porcine parvovirus. J. Comp. Path. 128, 52-59.

Kim, S.C., Kim, J.H., Kim, J.Y., Park, G.S., Jeong, C.G., Kim, W.I., 2022. Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC. Vet. Res. 18, 133.

Kresse, J., Taylor, W., Stewart, W., Eernisse, K., 1985. Parvovirus infection in pigs with necrotic and vesicle-like lesions. Vet. Microbiol. 10, 525-531.

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.

Li, J., Xiao, Y., Qiu, M., Li, X., Li, S., Lin, H., Li, X., Zhu, J., Chen, N., 2021. A Systematic investigation unveils high coinfection status of porcine parvovirus types 1 through 7 in China from 2016 to 2020. Microbiol. Spectr. 9, e0129421.

Liu, Y., Wang, J., Chen, Y., Wang, A., Wei, Q., Yang, S., Feng, H., Chai, S., Liu, D., Zhang, G., 2020. Identification of a dominant linear epitope on the VP2 capsid protein of porcine parvovirus and characterization of two monoclonal antibodies with neutralizing abilities. Int. J. Biol. Macromol. 163, 2013-2022.

Mai, J., Wang, D., Zou, Y., Zhang, S., Meng, C., Wang, A., Wang, N., 2021. High Co-infection Status of Novel Porcine Parvovirus 7 With Porcine Circovirus 3 in Sows That Experienced Reproductive Failure. Front. Vet. Sci. 8, 695553.

McKillen, J., Hjertner, B., Millar, A., McNeilly, F., Belák, S., Adair, B., Allan, G., 2007. Molecular beacon real-time PCR detection of swine viruses. J. Virol. Methods. 140, 155-165.

Mengeling, W.L., Paul, P.S., Brown, T.T., 1980. Transplacental infection and embryonic death following maternal exposure to porcine parvovirus near the time of conception. Arch. Virol. 65, 55-62.

Mészáros, I., Olasz, F., Cságola, A., Tijssen, P., Zádori, Z., 2017. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses. 9,393.

Miao, L.F., Zhang, C.F., Chen, C.M., Cui, S.J., 2009. Real-time PCR to detect and analyze virulent PPV loads in artificially challenged sows and their fetuses. Vet. Microbiol. 138, 145-149.

Ogawa, H., Taira, O., Hirai, T., Takeuchi, H., Nagao, A., Ishikawa, Y., Tuchiya, K., Nunoya, T., Ueda, S., 2009. Multiplex PCR and multiplex RT-PCR for inclusive detection of major swine DNA and RNA viruses in pigs with multiple infections. J. Virol. Methods. 160, 210-214.

Oraveerakul, K., Choi, C., Molitor, T., 1993. Tissue tropisms of porcine parvovirus in swine. Arch. Virol. 130, 377-389.

Oraveerakul, K., Choi, C.S., Molitor, T.W., 1990. Detection of porcine parvovirus using nonradioactive nucleic acid hybridization. J. Vet. Diagn. Invest. 2, 85-91.

Paul, P.S., Mengeling, W.L., Brown, T.T., Jr., 1979. Replication of porcine parvovirus in peripheral blood lymphocytes, monocytes, and peritoneal macrophages. Infect. Immun. 25, 1003-1007.

Pogranichniy, R., Lee, K., Machaty, Z., 2008. Detection of porcine parvovirus in the follicular fluid of abattoir pigs. J. of Swine Health Prod. 16, 244-246.

Saekhow, P., Ikeda, H., 2015. Prevalence and genomic characterization of porcine parvoviruses detected in Chiangmai area of Thailand in 2011. Microbiol. Immunol. 59, 82-88.

Saekhow, P., Kishizuka, S., Sano, N., Mitsui, H., Akasaki, H., Mawatari, T., Ikeda, H., 2015. Coincidental detection of genomes of porcine parvoviruses and porcine circovirus type 2 infecting pigs in Japan. J. Vet. Med. Sci. 77, 1581–1586.

Shackelton, L.A., Parrish, C.R., Truyen, U., Holmes, E.C., 2005. High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc. Natl. Acad. Sci. USA. 102, 379-384.

Soares, R.M., Cortez, A., Heinemann, M.B., Sakamoto, S.M., Martins, V.G., Bacci, M., de Campos Fernandes, F.M., Richtzenhain, L.J., 2003.

Genetic variability of porcine parvovirus isolates revealed by analysis of partial sequences of the structural coding gene VP2. J. Gen. Virol. 84, 1505-1515.

Streck, A.F., Canal, C.W., Truyen, U., 2022. Viral fitness and antigenic determinants of porcine parvovirus at the amino acid level of the capsid protein. J. Virol. 96, e0119821.

Streck, A.F., Homeier, T., Foerster, T., Fischer, S., Truyen, U., 2013. Analysis of porcine parvoviruses in tonsils and hearts from healthy pigs reveals high prevalence and genetic diversity in Germany. Arch. Virol. 158, 1173-1180.

Streck, A.F., Truyen, U., 2020. Porcine parvovirus. Curr. Issues Mol. Biol. 37, 33-46.

Sun, J., Huang, L., Wei, Y., Wang, Y., Chen, D., Du, W., Wu, H., Feng, L., Liu, C., 2015. Identification of three PPV1 VP2 protein-specific B cell linear epitopes using monoclonal antibodies against baculovirus-expressed recombinant VP2 protein. Appl. Microbiol. Biotechnol. 99, 9025-9036.

Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol, 38, 3022-3027.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.

Too, H., Love, R., 1986. Some epidemiological features and effects on reproductive performance of endemic porcine parvovirus infection. Aust. Vet. J. 63, 50-53.

Tummaruk, P., Tantilertcharoen, R., 2012. Seroprevalence of porcine reproductive and respiratory syndrome, Aujeszky’s disease, and porcine parvovirus in replacement gilts in Thailand. Trop. Anim. Health. Prod. 44, 983-989.

Vasudevacharya, J., Compans, R.W., 1992. The NS and capsid genes determine the host range of porcine parvovirus. Virol. J. 187, 515-524.

Walker, P.J., Siddell, S.G., Lefkowitz, E.J., Mushegian, A.R., Adriaenssens, E.M., Dempsey, D.M., Dutilh, B.E., Harrach, B., Harrison, R.L., Hendrickson, R.C., Junglen, S., Knowles, N.J., Kropinski, A.M., Krupovic, M., Kuhn, J.H., Nibert, M., Orton, R.J., Rubino, L., Sabanadzovic, S., Simmonds, P., Smith, D.B., Varsani, A., Zerbini, F.M., Davison, A.J., 2020. Changes to virus taxonomy and the statutesratified by the International Committee on Taxonomy of Viruses (2020). Arch. Virol. 165, 2737-2748.

Wrathall, A., Mengeling, W., 1979. Effect of porcine parvovirus on development of fertilized pig eggs in vitro. Br. Vet. J. 135, 249-254.

Zeeuw, E.J.L., Leinecker, N., Herwig, V., Selbitz, H.J., Truyen, U., 2007. Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. J. Gen. Virol. 88, 420-427.

Zhou, H., Yao, G., Cui, S., 2010. Production and purification of VP2 protein of porcine parvovirus expressed in an insect-baculovirus cell system. Virol. J. 7, 366.

Zimmermann, P., Ritzmann, M., Selbitz, H.J., Heinritzi, K., Truyen, U., 2006. VP1 sequences of German porcine parvovirus isolates define two genetic lineages. J. Gen. Virol. 87, 295-301.