Correlation between body condition score and body composition in a rat model for obesity research

Main Article Content

Parkpoom Siriarchavatana
Marlena C.Kruger
Frances M.Wolber


The incidences of obesity-associated chronic diseases are increasing worldwide. Research into the causes of obesity as well as potential treatments has highlighted the crucial role of preclinical studies using animal models. Rats are one of the most widely used species in obesity research. However, even with decades of research in both genetically obese rats and diet-induced obese rat models, definitive criteria to practically classify levels of obesity in the rat are not well established. The current study proposes new criteria modified from a 5-point body condition score (BCS) using in an animal health monitoring system and added a half-point scale to extend the range of body weight associated with subcutaneous fat deposition. The modified criteria were tested and compared with body composition from dual energy X-ray absorptiometry scans and selected adipose tissue weights. The results showed that the modified body condition scale was highly correlated with fat deposition in the rat body, particularly the visceral and inguinal fat pads. Both pads were closely related to changes in some specific landmarks used for the scale determination. These finding should extrapolate to obese rats in other models, with the advantage that data classified in BCS can pair the animal data with human body mass index. This will enhance the value of information from preclinical studies to design and predict outcomes of subsequent human clinical trials.


Download data is not yet available.

Article Details

How to Cite
Siriarchavatana, P. ., C.Kruger, M. ., & M.Wolber, F. . (2022). Correlation between body condition score and body composition in a rat model for obesity research: Veterinary Integrative Sciences, 20(3), 531–545. Retrieved from
Research Articles


Abshirini, M., Cabrera, D., Fraser, K., Siriarchavatana, P., Wolber, F. M., Miller, M. R., Tian, H. S., Kruger, M. C. 2021. Mass spectrometry-based metabolomic and lipidomic analysis of the effect of high fat/high sugar diet and greenshellTM mussel feeding on plasma of ovariectomized rats. Metabolites 11, 754-773.

Archer, E., Lavie, C. J., Hill, J. O. 2018. The contributions of 'diet', 'genes', and physical activity to the etiology of obesity: contrary evidence and consilience. Prog. Cardiovasc. Dis. 61(2), 89-102.

Boonyapakorn, C., Pinsuwan, T., Chumpuchai, T., Pongkan, W. 2019. Testosterone deprivation increases tendency to obesity but does not affect cardiac function in dogs. Vet. Integr. Sci. 17(3), 245-254.

Chilliard, Y. 1993. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: a review. J. Dairy Sci. 76, 3897-3931.

Chusyd, D. E., Wang, D., Huffman, D. M., Nagy, T. R. 2016. Relationships between rodent white adipose fat pads and human white adipose fat depots. Front. Nutr. 3, 10-10.

Clingerman, K. J., Summers, L. 2012. Validation of a body condition scoring system in rhesus macaques (Macaca mulatta): inter- and intrarater variability. J. Am. Assoc. Lab. Anim. Sci. 51(1), 31-36.

Collins, K. H., Reimer, R. A., Seerattan, R. A., Herzog, W., Hart, D. A. 2016. Response to diet-induced obesity produces time-dependent induction and progression of metabolic osteoarthritis in rat knees. J. Orthop. Res. 34(6), 1010-1018.

Ellulu, M. S., Patimah, I., Khaza'ai, H., Rahmat, A., Abed, Y. 2017. Obesity and inflammation: the linking mechanism and the complications. Arch. Med. Sci. 13(4), 851-863.

Foltz, C. J., Ullman-Cullere, M. 1999. Guidelines for assessing the health and condition of mice. Lab. Anim. 28(4), 28-32.

Hickman, D. L., Swan, M. 2010. Use of a body condition score technique to assess health status in a rat model of polycystic kidney disease. J. Am. Assoc. Lab. Anim. Sci. 49(2), 155-159.

Keinprecht, H., Pichler, M., Pothmann, H., Huber, J., Iwersen, M., Drillich, M. 2016. Short term repeatability of body fat thickness measurement and body condition scoring in sheep as assessed by a relatively small number of assessors. Small Rumin. Res. 139, 30-38.

Kruger, M. C., Morel, P. C. H. 2016. Experimental control for the ovariectomized rat model: Use of sham versus nonmanipulated animal. J. Appl. Anim. Welf. Sci. 19, 73-80.

Leeners, B., Geary, N., Tobler, P. N., Asarian, L. 2017. Ovarian hormones and obesity. Hum. Reprod. Update 23(3), 300-321.

Levin, B. E., Hogan, S. U. E., Sullivan, A. C. 1989. Initiation and perpetuation of obesity and obesity resistance in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 25(3), R766.

Lim, J. S., Lee, D. H., Park, J. Y., Jin, S. H., Jacobs, D. R. 2007. A strong interaction between serum gamma-glutamyltransferase and obesity on the risk of prevalent type 2 diabetes: results from the Third National Health and Nutrition Examination Survey. Clin. Chem. 53(6), 1092-1098.

Lutz, T. A., Woods, S. C. 2012. Overview of animal models of obesity. Curr. Protoc. Pharmacol. 58, 1-18.

Minihane, A. M., Vinoy, S., Russell, W. R., Baka, A., Roche, H. M., Tuohy, K. M., Teeling, J. L., Blaak, E. E., Fenech, M., Vauzour, D., McArdle, H. J., Kremer, B. H., Sterkman, L., Vafeiadou, K., Benedetti, M. M., Williams, C. M., Calder, P. C. 2015. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br. J. Nutr. 114(7), 999-1012.

Nilsson, C., Raun, K., Tang-Christensen, M., Yan, F. F., Larsen, M. O. 2012. Laboratory animals as surrogate models of human obesity. Acta Pharmacol. Sin. 33(2), 173-181.

O’Boyle, N., Corl, C. M., Gandy, J., Sordillo, L. M. 2006. Relationship of body condition score and oxidant stress to tumor necrosis factor expression in dairy cattle. Vet. Immunol. Immunopathol. 113, 297-304.

Otto, G. M., Franklin, C. L., Clifford, C. B. 2015. Biology and diseases of rats. In: Fox, J. G., Anderson, L. C., Otto, G. M., Pritchett-Corning, K. R., Whary, M. T. (Eds.), Laboratory Animal Medicine (Third Edition), Academic Press, pp. 151-207.

Pradhan, A. 2007. Obesity, metabolic syndrome, and type 2 diabetes: inflammatory basis of glucose metabolic disorders. Nutr. Rev. 65(12), 152-156.

Pranprawit, A., Wolber, F. M., Heyes, J. A., Molan, A. L., Kruger, M. C. 2013. Short-term and long-term effects of excessive consumption of saturated fats and/or sucrose on metabolic variables in Sprague Dawley rats: a pilot study. J. Sci. Food Agric. 93(13), 3191-3197.

Ràfols, M. E. 2014. Adipose tissue: Cell heterogeneity and functional diversity. Endocrinol. Nutr. 61(2), 100-112.

Reed, D. R., Duke, F. F., Ellis, H. K., Rosazza, M. R., Lawler, M. P., Alarcon, L. K., Tordoff, M. G. 2011. Body fat distribution and organ weights of 14 common strains and a 22-strain consomic panel of rats. Physiol. Behav. 103(5), 523-529.

Ross, S. E., Flynn, J. I., Pate, R. R. 2016. What is really causing the obesity epidemic? A review of reviews in children and adults. J. Sports Sci. 34(12), 1148-1153.

Rothney, M. P., Brychta, R. J., Schaefer, E. V., Chen, K. Y., Skarulis, M. C. 2009. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity 17(6), 1281-1286.

Shiwaku, K., Anuurad, E., Enkhmaa, B., Nogi, A., Kitajima, K., Shimono, K. 2004. Overweight Japanese with body mass indexes of 23.0-24.9 have higher risks for obesity-associated disorders: a comparison of Japanese and Mongolians. Int. J. Obes. (Lond), 28(1), 152-158.

Siriarchavatana, P., Kruger, M. C., Miller, M. R., Tian, H., Wolber, F. M. 2020. Effects of greenshell mussel (Perna canaliculus) intake on pathological markers of multiple phenotypes of osteoarthritis in rats. Appl. Sci. 10(17), 6131.

Siriarchavatana, P., Kruger, M. C., Miller, M. R., Tian, H., Wolber, F. M. 2022. The influence of obesity, ovariectomy, and greenshell mussel supplementation on bone mineral density in rats. JBMR Plus, e10571.

Tatsuhiro, M., Hiroyuki, T., Hiroo, S., Masashige, S. 2002. Body fat accumulation is greater in rats fed a beef tallow diet than in rats fed a safflower or soybean oil diet. Asia Pac. J. Clin. Nutr. (4), 302.

Teng, K. T., McGreevy, P. D., Toribio, J.-A. L. M. L., Raubenheimer, D., Kendall, K., Dhand, N. K. 2018. Strong associations of nine-point body condition scoring with survival and lifespan in cats. J. Feline Med. Surg. 1110-1118.

Todendi, P. F., Possuelo, L. G., Klinger, E. I., Reuter, C. P., Burgos, M. S., Moura, D. J., Fiegenbaum, M., Valim, A. R. d. M. 2016. Low-grade inflammation markers in children and adolescents: influence of anthropometric characteristics and CRP and IL6 polymorphisms. Cytokine 88, 177-183.

Ullman-Cullere, M. H., Foltz, C. J. 1999. Body condition scoring: A rapid and accurate method for assessing health status in mice. Lab. Anim. Sci. 49, 319-323.

Warner, A., Kjellstedt, A., Carreras, A., Böttcher, G., Xiao-Rong, P., Seale, P., Oakes, N., Lindén, D. 2016. Activation of β3-adrenoceptors increases in vivo free fatty acid uptake and utilization in brown but not white fat depots in high-fat-fed rats. Am. J. Physiol. Endocrinol. Metab. 311(6), 901-910.

Whitlock, G., Lewington, S., Sherliker, P., Clarke R, Emberson, J., Halsey, J., Qizilbash, N., Collins, R., Peto, R. 2009. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 373(9669), 1083-1096.

World Health Organization. 2004. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The Lancet 363, 157-163.