Natural and recombinant equine chorionic gonadotropins past and future in animal reproductive technology https://doi.org/10.12982/VIS.2022.058

Main Article Content

Duong Tien Thach
Bui Khac Cuong
Hoang Van Tong
Vo Van Chi
Ngo Kim Khue
Nguyen Thi Phuong Hien
Nong Van Hai
Yves Combarnous
Thi Mong Diep Nguyen

Abstract

Equine Chorionic Gonadotropin (eCG) previously named Pregnant Mare Serum Gonadotropin (PMSG) has been widely used since the 40s in animal reproduction control. It is extracted from the blood of pregnant mares between days 40 and 120 of gestation. Animal welfare organizations have voiced concerns against mares bleeding conditions. There is currently no effective substitute for the natural PMSG. In this review, we summarize the basic knowledge of the structure and biology of eCG, and the research on recombinant eCG production in the past five years.

Downloads

Download data is not yet available.

Article Details

How to Cite
Tien Thach, D. ., Khac Cuong, B. ., Van Tong, H. ., Van Chi, V. ., Kim Khue, N. ., Thi Phuong Hien, N. ., Van Hai, N. ., Combarnous, Y. ., & Mong Diep Nguyen, T. . (2022). Natural and recombinant equine chorionic gonadotropins past and future in animal reproductive technology: https://doi.org/10.12982/VIS.2022.058. Veterinary Integrative Sciences, 20(3), 751–760. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/259739
Section
Review Article

References

Baruselli, P.S., Ferreira, R.M., Sá Filho, M.F., Nasser, L.F.T., Rodrigues, C.A. Bo, G.A.,2010. Bovine embryo transfers recipient synchronisation and management in tropical environments. Reprod. Fertil. Dev. 22(1), 67-74.

Bevers, M.M., Dieleman, S.J., Tol van, H.T., Blankenstein, D.M. Broek, J.V.D., 1989.Changes in pulsatile secretion patterns of LH, FSH, progesterone, androstenedione and oestradiol in cows after superovulation with PMSG. J. Reprod. Fertil. 87(2),745-754.

Byambaragchaa, M., Lee, S.Y., Kim, D.J., Kang, M.H., Min, K.S., 2018. Signal transduction of eel luteinizing hormone receptor (eelLHR) and follicle stimulating hormone receptor (eelFSHR) by recombinant equine chorionic gonadotropin (rec-eCG) and native eCG. Dev. Reprod. 22(1), 55.

Byambaragchaa, M., Choi, S.H., Joo, H.E., Kim, S.G., Kim, Y.J., Park, G.E., Kang, M.H.,Min, K.S., 2021a. Specific biological activity of equine chorionic gonadotropin (eCG) glycosylation sites in cells expressing equine luteinizing hormone/CG (eLH/CG) receptor. Dev. Reprod. 25(4), 199.

Byambaragchaa, M., Park, A., Gil, S.J., Lee, H.W., Ko, Y.J., Choi, S.H., Kang, M.H., Min,K.S., 2021b. Luteinizing hormone-like and follicle-stimulating hormone-like activities of equine chorionic gonadotropin β-subunit mutants in cells expressing rat luteinizing hormone/chorionic gonadotropin receptor and rat follicle-stimulating hormone receptor. Anim. Cells Syst. 25(3), 171-181.

Combarnous, Y., Hennen, G., Ketelslegers, J.M., 1978. Pregnant mare serum gonadotropin exhibits higher affinity for lutropin than for follitropin receptors of porcine testis.FEBS. Lett. 90(1), 65-68.

Combarnous, Y., Salesse, R., Garnier, J., 1981. Physico-chemical properties of pregnant mare serum gonadotropin. Biochim. Biophys. Acta. 667(2), 267-276.

Combarnous, Y., 1992. Molecular basis of the specificity of binding of glycoprotein hormones to their receptors. Endocr. Rev. 13, 670-691.

De Rensis, F., Lopez-Gatius, F., 2014. Use of equine chorionic gonadotropin to control reproduction of the dairy cow: A review. Reprod. Domest. Anim. 49(2), 177-182.

Esbenshade, K.L., Ziecik, A.J., Britt, J.H. 1990. Regulation and action of gonadotropins in pigs. J. Reprod. Fertil. Suppl. 40, 19-32.

Galet, C., Guillou, F., Foulon-Gauze, F., Combarnous, Y., Chopineau, M., 2009. The b104–109 sequence is essential for the secretion of correctly. folded single-chain ba horse LH/CG and for its FSH activity. J. Endocrinol. 203(1), 167-174

Garcia-Campayo, V., Boime, I., 2001. Novel recombinant gonadotropins. Trends. Endocrinol.Metab. 12(2), 72-77.

Guillou, F., Combarnous, Y., 1983. Purification of equine gonadotropins and comparative study of their acid-dissociation and receptor-binding specificity. Biochim. Biophys.Acta. 755(2), 229-236.

Jeoung, Y.H., Yoon, J.T., Min, K.S., 2010. Biological functions of the COOH-terminal amino acids of the α-subunit of tethered equine chorionic gonadotropin. Reprod. Dev. Biol.34(1), 47-53.

Lee, S.Y., Byambaragchaa, M., Kim, J.S., Seong, H.K., Kang, M.H., Min, K.S., 2017.Biochemical characterization of recombinant equine chorionic gonadotropin (rec-eCG), using CHO cells and PathHunter Parental cells expressing equine luteinizing hormone/chorionic gonadotropin receptors (eLH/CGR). J. Life Sci.27(8), 864-872.

Lee, S.Y., Byambaragchaa, M., Choi, S.H., Kang, H.J., Kang, M.H., Min, K.S., 2021. Roles of N-linked and O-linked glycosylation sites in the activity of equine chorionic gonadotropin in cells expressing rat luteinizing hormone/chorionic gonadotropin receptor and follicle-stimulating hormone receptor. BMC Biotechnol. 21(1), 1-13.

Legardinier, S., Cahoreau, C., Klett, D., Combarnous, Y., 2005. Involvement of equine chorionic gonadotropin (eCG) carbohydrate side chains in its bioactivity; lessons from recombinant hormone expressed in insect cells. Reprod. Nutr. Dev. 45(3),255-259.

Legardinier, S., Poirier, J.C., Klett, D., Combarnous, Y., Cahoreau, C., 2008. Stability and biological activities of heterodimeric and single-chain equine LH/chorionic gonadotropin variants. J. Mol. Endocrinol. 40(4), 185-198.

Lunenfeld, B., Bilger, W., Longobardi, S., Alam, V., D'Hooghe, T., Sunkara, S.K., 2019. The development of gonadotropins for clinical use in the treatment of infertility. Front.Endocrinol. 10, 429.

Matsui, T., Sugino, H., Miura, M., Bousfield, G.R., Ward, D.N., Titani, K., Mizuochi, T.,1991. β-subunits of equine chorionic gonadotropin and lutenizing hormone with an identical amino acid sequence have different asparagine-linked oligosaccharide chains. Biochem. Biophys. Res. Commun. 174(2), 940-945.

Matsui, T., Mizuochi, T., Titani, K., Okinaga, T., Hoshi, M., Bousfield, G.R., Sugino, H., Ward, D.N., 1994. Structural analysis of N-linked oligosaccharides of equine chorionic gonadotropin and lutropin. beta.-subunits. Biochemistry. 33(47),14039-14048.

Min, K.S., Hattori, N., Aikawa, J.I., Shiota, K., Ogawa, T., 1996. Site-directed mutagenesis of recombinant equine chorionic gonadotropin/luteinizing hormone differential role of oligosaccharides in luteinizing hormone-and follicle-stimulating hormone-like

activities. Endocr. J. 43(5), 585-593.

Min, K.S., Hiyama, T., Seong, H.H., Hattori, N., Tanaka, S., Shiota, K., 2004. Biological activities of tethered equine chorionic gonadotropin (eCG) and its deglycosylated mutants. J. Reprod. Dev. 50(3), 297-304.

Min, K.S., Park, J.J., Byambaragchaa, M., Kang, M.H., 2019. Characterization of tethered equine chorionic gonadotropin and its deglycosylated mutants by ovulation stimulation in mice. BMC Biotechnol. 19(1), 1-9.

Min, K.S., Park, J.J., Lee, S.Y., Byambaragchaa, M., Kang, M.H., 2020. Comparative gene expression profiling of mouse ovaries upon stimulation with natural equine chorionic gonadotropin (N-eCG) and tethered recombinant-eCG (R-eCG). BMC Biotechnol.

(1), 1-13.

Moor, R., Allen, W., Hamilton, D., 1975. Origin and histogenesis of equine endometrial cups.J. Reprod. Fertil. Suppl. (23), 391-395.

Murphy, B.D., Martinuk, S.D., 1991. Equine chorionic gonadotropin. Endocr. Rev. 12(1),27-44.

Nogueira, M.F., Melo, D.S., Carvalho, L.M., Fuck, E.J., Trinca, L.A., Barros, C.M., 2004. Do high progesterone concentrations decrease pregnancy rates in embryo recipients synchronized with PGF2alpha and eCG?. Theriogenology. 61(7-8), 1283-1290.

Park, J.J., JarGal, N., Yoon, J.T., Min, K.S., 2009. Function of the tethered rec-eCG in rat and equine receptors. Reprod. Dev. Biol. 33(4), 229-236.

Park, J.J., JarGal, N., Yoon, J.T., Min, K.S., 2010. β-Subunit 94~96 residues of tethered recombinant equine chorionic gonadotropin are important sites for luteinizing hormone and follicle stimulating hormone like activities. Reprod. Dev. Biol. 34(1), 33-40.

Park, J.J., Seong, H.K., Kim, J.S., Munkhzaya, B., Kang, M.H., Min, K.S., 2017. Internalization of rat FSH and LH/CG receptors by rec-eCG in CHO-K1 cells. Dev. Reprod. 21(2), 111.

Saint-Dizier, M., Chopineau, M., Dupont, J., Combarnous, Y., 2004. Expression of the full-length and alternatively spliced equine luteinizing hormone/chorionic gonadotropin receptor mRNAs in the primary corpus luteum and fetal gonads during pregnancy. Reproduction. 128(2), 219-228.

Sousa, L.M., Mendes, G.P., Campos, D.B., Baruselli, P.S., Papa, P.C., 2016. Equine chorionic gonadotropin modulates the expression of genes related to the structure and function of the bovine corpus luteum. PLoS One. 11(10), e0164089.

Talwar, G.P., Gupta, J.C., Rulli, S.B., Sharma, R.S., Nand, K.N., Bandivdekar, A.H., Atrey, N., Singh, P., 2015. Advances in development of a contraceptive vaccine against human chorionic gonadotropin. Expert. Opin. Biol. Ther. 15(8), 1183-1190.