Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species https://doi.org/10.12982/VIS.2023.018

Main Article Content

Nur Hidayah
Kustantinah Kustantinah
Cuk Tri Noviandi
Andriyani Astuti
Chusnul Hanim
Bambang Suwignyo

Abstract

Studies on the identification and characterization of numerous seaweed species from tropical oceans have not been widely reported. The objective of this study was to evaluate the rumen in vitro gas production and fermentation characteristics of four tropical seaweed species. The design of treatments was a randomized complete block design with four different seaweed species (brown seaweed: Laminaria sp. and Padina australis; red seaweed: Gracilaria sp. and Eucheuma cottonii) and four replications for each treatment. For the gas production, easily degraded fraction (a), potentially degraded fraction (b), rate of gas production of b fraction (c), and total fraction degraded (a+b) parameters of brown seaweed were higher and faster than those of red seaweed. The lowest methane production at 24 hours incubation was obtained for Gracilaria sp., which reduced methane production from blank (44.38%) and standard (Pangola substrate) samples (60.63%), followed by Padina australis at 28.98 and 49.73% respectively. Padina australis resulted in the highest propionate proportion (16.03%), lowest butyrate (11.92%) and A:P ratio (4.52) (P<0.05). There were no differences in NH3 (34.17-37.31 mg/100 mL) or microbe protein concentration (9.03-10.60 mg/100 mL) among the seaweed species. It was concluded that brown seaweed (Laminaria sp. and Padina australis) were more degradable than red seaweed (Gracilaria sp. and Eucheuma cottonii) in the rumen. Padina australis is the most potential as ruminant feed because it resulted in the highest propionate proportion, the lowest butyrate and A:P ratio, and low methane production and did not disturb the NH3 and microbe protein concentrations.

Article Details

How to Cite
Hidayah, N., Kustantinah, K., Noviandi, C. T., Astuti, A., Hanim, C., & Suwignyo, B. (2023). Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species: https://doi.org/10.12982/VIS.2023.018. Veterinary Integrative Sciences, 21(1), 229–238. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/260606
Section
Research Articles

References

Adiwimarta, K., Indarto, E., Zuprizal, Z., Noviandi, C.T., Dono, N.D., Mukti, F.A., 2017. Feed evaluation based on gas production of twelve tropical feedstuffs. In International Seminar on Tropical Animal Production (ISTAP), Yogyakarta, Indonesia, 12-14 September 2017.

Allen, K.D., Wegener, G., White, R.H., 2014. Discovery of multiple modified F(430) coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F(430) in nature. Appl. Environ. Microbiol. 80(20), 6403-6412.

Belanche, A., Pinloche, E., Preskett, D., Newbold, C.J., 2016. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol. Ecol. 92(1), 1-13.

BPS., 2021. Ekspor Rumput laut dan ganggang lainnya menurut negara tujuan utama, 2012-2020. Available online: https://www.bps.go.id/statictable/2019/02/25/2025/ekspor-rumput -laut-dan ganggang-lainnya-menurut-negara-tujuan-utama-2012-2020.html.

Blaxter, K.L., 1962. The energy metabolism of ruminants. Hutchinson & Co, London. Broucek, J., 2014. Production of methane emissions from ruminant husbandry: a review. J. Environ. Prot. 5(15), 1482-1493.

Carulla, J., Kreuzer, M., Machmüller, A., Hess, H., 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J.Agric. Res. 56(9), 961-970.

Chen, X., 1994. Neway program international feed resources Unit. Rowett Research Institute, Aberdeen.

Choi, Y., Lee, S.J., Kim, H.S., Eom, J.S., Jo, S.U., Guan, L.L., Seo, J., Kim, H., Lee, S.S., Lee, S.S., 2021. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Sci Rep. 11(1), 24092.

Costa, K.C., Leigh, J.A., 2014. Metabolic versatility in methanogens. Curr. Opin. Biotechnol. 29, 70-75.

de la Moneda, A., Carro, M.D., Weisbjerg, M.R., Roleda, M.Y., Lind, V., Novoa-Garrido, M., Molina-Alcaide, E., 2019. Variability and potential of seaweeds as ingredients of ruminant diets: an in vitro study. Animal. 9(10), 1-19.

Dini, Y., Gere, J., Briano, C., Manetti, M., Juliarena, P., Picasso, V., Gratton, R., Astigarraga, L., 2012. Methane emission and milk production of dairy cows grazing pastures rich in legumes or rich in grasses in Uruguay. Animals. 2(2), 288-300.

Dubois, B., Tomkins, N.W., Kinley, R.D., Bai, M., Seymour, S., Paul, A.N., de Nys, R., 2013. Effect of tropical algae as additives on rumen & gas production and fermentation characteristics. Am. J. Plant. Sci. 4(12), 34-43.

Fievez, V., Babayemi, O., Demeyer, D., 2005. Estimation of direct and indirect gas production in syringes: a tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed. Sci. Technol. 123-124, 197-210.

Getachew, G., Robinson, P., DePeters, E., Taylor, S., 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed. Sci. Technol. 111(1-4), 57-71.

Gupta, S., Abu-Ghannam, N., 2011. Bioactive potential and possible health effects of edible brown seaweeds. Trends. Food. Sci. Technol. 22(6), 315-326.

Hierholtzer, A., Chatellard, L., Kierans, M., Akunna, J.C., Collier, P.J., 2013. The impact and mode of action of phenolic compounds extracted from brown seaweed on mixed anaerobic microbial cultures. J. Appl. Microbiol. 114(4), 964-973.

Imbs, T., Zvyagintseva, T., 2018. Phlorotannins are polyphenolic metabolites of brown algae. Russ. J. Mar. Biol. 44(4), 263-273.

Jung, K.W., Kim, D.H., Shin, H.S.B.T., 2011. Fermentative hydrogen production from laminaria japonica and optimization of thermal pretreatment conditions. Bioresour. 102(3), 2745-2750.

Kinley, R.D., Martinez-Fernandez, G., Matthews, M.K., de Nys, R., Magnusson, M.,Tomkins, N.W., 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. 259, 120836.

Kinley, R.D., Vucko, M.J., Machado, L., Tomkins, N.W., 2016. Evaluation of the antimethanogenic potency and effects on fermentation of individual and combinations of marine macroalgae. Am. J. Plant Sci. 7(14), 2038-2054.

Kulivand, M., Kafilzadeh, F., 2015. Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses. Acta Sci. 37(1), 9-14.

Kustantinah, Hidayah, N., Noviandi, C.T., Astuti, A., Paradhipta, D.H.V., 2022. Nutrients content of four tropical seaweed species from Kalapa Beach, Tuban, Indonesia and their potential as ruminant feed. Biodiversitas. 23(12), 6191-6197.

Machado, L., Magnusson, M., Paul, N.A., de Nys, R. Tomkins, N., 2014. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. Plos One.9(1), e85289.

Martínez, M., Ranilla, M.J., Tejido, M.L., Ramos, S., Carro, M., 2010. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and rusitec fermenters, digestibility, fermentation parameters, and microbial Growth. J. Dairy. Sci. 93(8), 3684-3698.

Matanjun, P., Mohamed, S., Mustapha, N.M., Muhammad, K., 2009. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera, and Sargassum polycystum. J. Appl. Phycol. 21(1), 75-80.

Mayberry, D., Bartlett, H., Moss, J., Davison, T., Herrero, M., 2019. Pathways to carbon-neutrality for the australian red meat sector. Agric. Syst. 175, 13-21.

Meale, S.J., Chaves, A.V., Baah, J., McAllister, T.A., 2012. Methane Production of different forages in vitro ruminal fermentation. Asian-Australas J. Anim. Sci. 25(1), 86-91.

Menke, K.H., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. J. Anim. Res. 28,7-55.

Min, B. R., Parker, D., Brauer, D., Waldrip, H., Lockard, C., Hales, K., Akbay, A., Augyte,S., 2021. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: challenges and opportunities. Anim. Nutr. 7(4), 1371-1387.

Molina-Alcaide, E., Carro, M.D., Roleda, M.Y., Weisbjerg, M.R., Lind, V., Novoa-Garrido, M., 2017. In vitro ruminal fermentation and methane production of different seaweed species. Anim. Feed. Sci. Technol. 228, 1-12.

Pandey, D., Mansouryar, M., Novoa-Garrido, M., Næss, G., Kiron, V., Hansen, H.H., Nielsen,M.O., Khanal, P., 2021. Nutritional and anti-methanogenic potentials of macroalgae for ruminants. In: Lei, X. (Ed.), Seaweed and Microalgae as Alternative Sources of Protein. Burleigh Dodds Science Publishing, London, pp. 195-228.

Park, J.H., Yoon, J.J., Park, H.D., Lim, D.J., Kim, S.H., 2012. Anaerobic digestibility of algal bioethanol residue. Bioresour. 113, 78-82.

Penner, G., Taniguchi, M., Guan, L., Beauchemin, K., Oba, M., 2009. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. J. Dairy Sci. 92(6), 2767-2781.

Plummer, D., 1967. An introduction to Practical Biochemistry, 3rd edition. McGraw-Hill Book, New Delhi.

Puchala, R., Min, B., Goetsch, A., Sahlu, T., 2005. The Effect of a condensed tannincontaining forage on methane emission by goats. J. Anim. Sci. 83(1), 182-186.

Roque, B.M., Brooke, C.G., Ladau, J., Polley, T., Marsh, L.J., Najafi, N., Pandey, P., Singh,L., Kinley, R., Salwen, J.K., Eloe-Fadrosh, E., Kebreab, E., Hess, M., 2019. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Anim. Microbiom. 1(1), 1-3.

Sarwono, K., Kondo, M., Ban-Tokuda, T., Jayanegara, A., Matsui, H., 2019. Effects of phloroglucinol and the forage: concentrate ratio on methanogenesis, in vitro rumen fermentation, and microbial population density. J Adv. Anim. Vet. Sci. 7(3),164-171.

Satter, L.D., Slyter, L.L., 1974. Effect of ammonia concentration of rumen microbial protein production in vitro. Br. J. Nutr. 32(2), 199-208.

Scalbert, A., 1991. Antimicrobial properties of tannins. J. Phytochemist. 30(12), 3875-3883.

Steel, R.G.D., Torrie, J.H., 1995. Prinsip dan Prosedur Statistik Suatu Pendekatan Biometrik. PT Gramedia Pustaka Utama, Jakarta.

Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N., Attwood, G.T., Sivakumaran, S., 2005. Methane production from in vitro rumen incubations with lotus pedunculatus and Medicago sativa, and effects af extractable condensed tannin fractions an methanogenesis. J. Anim. Sci. 123, 403-419.

Van Kessel, J.A.S., Russell, J.B., 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20(4), 205-210.

Wang, L., Park, Y.J., Jeon, Y.J., Ryu, B., 2018. Bioactivities of the edible brown seaweed, Undaria pinnatifida: a review. Aquaculture. 495, 873-880.

Weatherburn, M., 1967. Phenol-Hypochlorite Reaction for determination of ammonia. J. Anal. Chem. 39(8), 971-974.

Yanuartono, Y., Nururrozi, A., Indarjulianto, S., Purnamaningsih, H., 2019. Peran protozoa pada pencernaan ruminansia dan dampak terhadap lingkungan. J. Trop. Anim. Prod. 20(1), 16–28.