Effects of galacto-oligosaccharides on growth performance and gut health in broiler chicken https://doi.org/10.12982/VIS.2025.029
Main Article Content
Abstract
This study investigated the effects of prebiotic galacto-oligosaccharides (GOS) derived from beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, on growth performance and gut health in broilers. A total of 100-day-old ROSS-308 male broilers were randomly allocated into two groups, five replications per group. The control group (CON) received only a basal diet, while the experimental group (GOS) received a basal diet supplemented with 1% functional GOS for the first three weeks, then a basal diet until week five. Body weight, feed intake, average daily gain, and feed conversion ratio were recorded. Short-chain fatty acids (SCFAs) and blood malondialdehyde (MDA) levels in intestinal contents were analyzed on weeks 1, 2, 3, and 5. Internal organ weights and intestinal morphology were determined on weeks 3 and 5. The results showed no effect of the GOS on growth performance indicators. However, the GOS group revealed FCR improvement during weeks 4-5 (P <0.05). Higher total SCFAs levels in the duodenum and ileum of the GOS group were observed in week 1. Whereas only propionic acid in the cecum on week 2 and acetic acid and total SCFAs in the ileum on week 3 were higher in the GOS group than in the CON group (P <0.05). In the ileum, shorter crypt depth and higher villi height per crypt depth ratio were demonstrated in week 3 (P <0.05). The GOS group had lower liver and bursa weights than the CON group (P <0.05). Additionally, the GOS group had lower MDA levels than the CON group on weeks 1 and 3 (P <0.05). These findings suggest that GOS supplementation could promote gut health in broilers.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Ao, Z., Choct, M., 2013. Oligosaccharides affect performance and gut development of broiler chickens. Asian-Australas J. Anim. Sci. 26, 116-121.
Askri, A., Raach-Moujahed, A., M’hamdi, N., Maalaoui, Z. and Debbabi, H., 2020. Broiler’s performance and carcass characteristics improvement by prebiotic supplementation. Large. Anim. Rev. 26(5), 249-256.
Baurhoo, B., Ferket, P.R., Zhao, X., 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult. Sci. 88, 2262-2272.
Bozkurt, M., küçükyılmaz, K., Çatlı, A.U., Çınar, M., 2008. The effect of single or combined dietary supplementation of prebiotics, organic acid and probiotics on performance and slaughter characteristics of broilers. S. Afr. J. Anim. Sci. 39, 197-205.
Calik, A., Ergün, A., 2015. Effect of lactulose supplementation on growth performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poult. Sci. 94, 2173-2182.
Charalampopoulos, D., Rastall, R.A., 2009. Prebiotics and probiotics science and technology. Springer, New York.
De Maesschalck, C., Eeckhaut, V., Maertens, L., De Lange, L., Marchal, L., Nezer, C., De Baere, S., Croubels, S., Daube, G., Dewulf, J., Haesebrouck, F., Ducatelle, R., Taminau, B., Van Immerseel, F., 2015. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. Appl. Environ. Microbiol. 81, 5880-5888.
Depeint, F., Tzortzis, G., Vulevic, J., I'anson, K., Gibson, G.R., 2008. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am. J. Clin. Nutr. 87, 785-791.
Dittoe, D.K., Ricke, S.C., Kiess, A.S., 2018. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front. Vet. Sci. 5, 216.
Fernandes, B., Martins, M., Mendes, A., Milbradt, E., Sanfelice, C., Martins, B., Aguiar, E., Bresne, C., 2014. Intestinal integrity and performance of broiler chickens fed a probiotic, a prebiotic, or an organic acid. Braz. J. Poult. Sci. 16, 417-424.
Frye, R.E., Nankova, B., Bhattacharyya, S., Rose, S., Bennuri, S.C., MacFabe, D.F., 2017. Modulation of immunological pathways in autistic and neurotypical lymphoblastoid cell lines by the enteric microbiome metabolite propionic acid. Front. Immunol. 8, 1670.
Gadde, U., Kim, W., Oh, S., Lillehoj, H., 2017. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health. Res. Rev. 18, 1-20.
Gibson, G., McCartney, A., Rastall, R., 2005. Prebiotics and resistance to gastrointestinal infections. Br. J. Nutr. 93, S31-S34.
Gibson, G., Scott, K., Rastall, R., Tuohy, K., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E., Saulnier, D., Loh, G., Macfarlane, S., Delzenne, N., Ringel, Y., Kozianowski, G., Dickmann, R., Lenoir-Wijnkoop, I., Walker, C., Buddington, R., 2010. Dietary prebiotics: current status and new definition. Food. Sci. Technol. Bull. 7, 1-19.
González-Bosch, C., Boorman, E., Zunszain, P.A., Mann, G.E., 2021. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox. Biol. 47, 102165.
Hughes, R.A., Ali, R.A., Mendoza, M.A., Hassan, H.M., Koci, M.D., 2017. Impact of dietary galacto-oligosaccharide (GOS) on chicken’s gut microbiota, mucosal gene expression, and salmonella colonization. Front Vet Sci. 4, 192.
Intanon, M., Arreola, S.L., Pham, N.H., Kneifel, W., Haltrich, D., Nguyen, T.H., 2014. Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiol. Lett. 353, 89-97.
Jha, R., Mishra, P., 2021. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J. Animal. Sci. Biotechnol. 12, 51.
Jung, S., Houde, R., Baurhoo, B., Zhao, X., Lee, B., 2008a. Effects of galacto-oligosaccharides and a Bifidobacteria lactis-based probiotic strain on the growth performance and fecal microflora of broiler chickens. Poult. Sci. 87, 1694-1699.
Jung, S.J., Houde, R., Baurhoo, B., Zhao, X., Lee, B.H., 2008b. Effects of galacto-oligosaccharides and a Bifidobacteria lactis-based probiotic strain on the growth performance and fecal microflora of broiler chickens. Poult. Sci. 87, 1694-1699.
Kareem, K.Y., Loh, T.C., Foo, H.L., Akit, H., Samsudin, A.A., 2016. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC. Vet. Res. 12, 163.
Khan, S.H., Iqbal, J., 2016. Recent advances in the role of organic acids in poultry nutrition. J. Appl. Anim. Res. 44(1), 359-369
Kittibunchakul, S., van Leeuwen, S.S., Dijkhuizen, L., Haltrich, D., Nguyen, T.H., 2020. Structural comparison of different galacto-oligosaccharide mixtures formed by β-galactosidases from lactic acid bacteria and bifidobacteria. J. Agric. Food. Chem. 68, 4437-4446.
Liao, X., Shao, Y., Sun, G., Yang, Y., Zhang, L., Guo, Y., Luo, X., Lu, L., 2020. The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poult. Sci. 99, 5883-5895.
Mann, G.E., Forman, H.J., 2015. Introduction to special issue on nrf2 regulated redox signaling and metabolism in physiology and medicine. Free Radic. Biol. Med. 88, 91-92.
Markowiak-Kopeć, P., Śliżewska, K., 2020. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 12(4), 1107.
Monaco, M.H., Kashtanov, D.O., Wang, M., Walker, D.C., Rai, D., Jouni, Z.E., Miller, M.J., Donovan, S.M., 2011. Addition of polydextrose and galactooligosaccharide to formula does not affect bacterial translocation in the neonatal piglet. J. Pediatr. Gastroenterol. Nutr. 52, 210-216.
Montagne, L., Pluske, J.R., Hampson, D.J., 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108, 95-117.
Mookiah, S., Sieo, C.C., Ramasamy, K., Abdullah, N., Ho, Y.W., 2014. Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. J. Sci. Food Agric. 94, 341-348.
Nguyen, T.T., Nguyen, H.A., Arreola, S.L., Mlynek, G., Djinović-Carugo, K., Mathiesen, G., Nguyen, T.H., Haltrich, D. 2012. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. J. Agric. Food Chem. 60(7), 1713–1721.
National Research Council, 1994. Nutrient requirements of poultry, 9th edition. National Academy Press, Washington DC.
Oliveira, M.C., Rodrigues, E.A., Marques, R.H., Gravena, R.A., Guandolini, G.C., Moraes, V.M.B., 2008. Performance and morphology of intestinal mucosa of broilers fed mannan-oligosaccharides and enzymes. Arq. Bras. Med. Vet. Zootec. 60, 442-448.
Pan, X.D., Chen, F.Q., Wu, T.X., Tang, H.G., Zhao, Z.Y., 2009. Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J. Zhejiang. Univ. Sci. B. 10, 258-263.
Pluske, J.R., Thompson, M.J., Atwood, C.S., Bird, P.H., Williams, I.H., Hartmann, P.E., 1996. Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows' whole milk after weaning. Br. J. Nutr. 76, 409-422.
Pongkan, W., Piamsiri, C., Dechvongya, S., Punyapornwitthaya, V., Boonyapakorn, C., 2022. Short-term melatonin supplementation decreases oxidative stress but does not affect left ventricular structure and function in myxomatous mitral valve degenerative dogs. BMC Vet. Res. 18, 24.
Pournazari, M., AA-Qotbi, A., Seidavi, A., Corazzin, M., 2017. Prebiotics, probiotics and thyme (Thymus vulgaris) for broilers: performance, carcass traits and blood variables. Rev. Colomb. de Cienc. Pecu. 30(1), 3-10.
Pruszynska-Oszmalek, E., Kolodziejski, P.A., Stadnicka, K., Sassek, M., Chalupka, D., Kuston, B., Nogowski, L., Mackowiak, P., Maiorano, G., Jankowski, J., Bednarczyk, M., 2015. In ovo injection of prebiotics and synbiotics affects the digestive potency of the pancreas in growing chickens. Poult. Sci. 94, 1909-1916.
Rafiq, K., Tofazzal Hossain, M., Ahmed, R., Hasan, M.M., Islam, R., Hossen, M.I., Shaha, S.N. Islam, M.R., 2022. Role of different growth enhancers as alternative to in-feed antibiotics in poultry industry. Front. Vet. Sci. 8, 794588.
Rehman, A., Arif, M., Sajjad, N., Al-Ghadi, M.Q., Alagawany, M., Abd El-Hack, M.E., Alhimaidi, A.R., Elnesr, S.S., Almutairi, B.O., Amran, R.A. and Hussein, E.O.S., 2020. Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult. Sci. 99(12), 6946-6953.
Richards, P.J., Lafontaine, G.M.F., Connerton, P.L., Liang, L., Asiani, K., Fish, N.M., Connerton, I.F., Cleary, D.W., 2020. Galacto-oligosaccharides modulate the juvenile gut microbiome and innate immunity to improve broiler chicken performance. mSystems. 5, e00827-00819.
Ricke, S.C., Lee, S.I., Kim, S.A., Park, S.H., Shi, Z., 2020. Prebiotics and the poultry gastrointestinal tract microbiome. Poult. Sci. 99, 670-677.
Sakata, T., Yajima, T., 1984. Influence of short chain fatty acids on the epithelial cell division of digestive tract. Q. J. Exp. Physiol. 69, 639-648.
Slawinska, A., Dunislawska, A., Plowiec, A., Radomska, M., Lachmanska, J., Siwek, M., Tavaniello, S., Maiorano, G., 2019. Modulation of microbial communities and mucosal gene expression in chicken intestines after galactooligosaccharides delivery In Ovo. PLOS ONE. 14, e0212318.
Swennen, K., Courtin, C.M., Delcour, J.A., 2006. Non-digestible oligosaccharides with prebiotic properties. Crit. Rev. Food Sci. Nutr. 46, 459-471.
Tian, S., Wang, J., Yu, H., Wang, J., Zhu, W., 2018. Effects of galacto-oligosaccharides on growth and gut function of newborn suckling piglets. J. Anim. Sci. Biotechnol. 9, 75.
Tian, S., Wang, J., Yu, H., Wang, J., Zhu, W., 2019. Changes in ileal microbial composition and microbial metabolism by an early-life galacto-oligosaccharides intervention in a neonatal porcine model. Nutrients. 11, 1753.
Torres, D.P.M., Gonçalves, M.D.P.F., Teixeira, J.A., Rodrigues, L.R., 2010. Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr. Rev. Food. Sci. Food. Saf. 9, 438-454.
Varasteh, S., Braber, S., Akbari, P., Garssen, J., Fink-Gremmels, J., 2015. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLOS ONE. 10, e0138975.
Xing, Y.Y., Li, K.N., Xu, Y.Q., Wu, Y.Z., Shi, L.L., Guo, S.W., Yan, S.M., Jin, X., Shi, B.L., 2020. Effects of galacto-oligosaccharide on growth performance, feacal microbiota, immune response and antioxidant capability in weaned piglets. J. Appl. Anim. Res. 48, 63-69.
Yang, Z., Zhang, C., Wang, J., Celi, P., Ding, X., Bai, S., Zeng, Q., Mao, X., Zhuo, Y., Xu, S., Yan, H., Zhang, K., Shan, Z., 2020. Characterization of the intestinal microbiota of broiler breeders with different egg laying rate. Front. Vet. Sci. 7, 599337.
Zhai, Q., Zhang, Q., Tian, F., Zhao, J., Zhang, H., Chen, W., 2019. The synergistic effect of Lactobacillus plantarum CCFM242 and zinc on ulcerative colitis through modulating intestinal homeostasis. Food. Funct. 10, 6147-6156.
Zhou, Y., Kruger, C., Ravi, G.S., Kumar, D.S., Vijayasarathi, S.K., Lavingia, M., Chen, X., Ambriz, P., 2017. Safety evaluation of galacto-oligosaccharides: subchronic oral toxicity study in Sprague-Dawley rats. Toxicol. Res. Appl. 1, 1-12.