Occurrence of ciprofloxacin resistance, plasmid-mediated quinolone resistance genes and virulence factors in Salmonella enterica serovar Enteritidis isolated from broilers in Thailand isolated from broilers in Thailand https://doi.org/10.12982/VIS.2023.042

Main Article Content

Nusara Suwannachot
Warisa Ketphan
Suphattra Jittimanee
Patchara Phuektes

Abstract

Salmonella Enteritidis is one of the most common serovars associated with gastroenteritis in humans. Fluoroquinolone resistance in non-typhoidal Salmonella including S. Enteritidis has increased globally and is considered as a threat to public health. In this study, we aimed to investigate the occurrence of ciprofloxacin resistance and plasmid-mediated quinolone resistance (PMQR) genes, and examine virulence gene profiles of 69 S. Enteritidis isolates recovered from 46 boot swab and 23 intestinal samples collected from 69 commercial intensive broiler farms in Thailand. Ciprofloxacin susceptibility of these isolates was determined using microbroth dilution method. PCR was used to detect 5 common PMQR genes (qnrA, qnrB, qnrS, aac(6')-Ib-cr and qepA) and 12 important virulence genes (agfA, invA, spaN, prgH, sitC, ssaQ, mgtC, sopB, sifA, tolC, cdtB and spvC). All S. Enteritidis showed reduced susceptibility to ciprofloxacin, with the MIC values of 0.125-0.50 µg/mL. However, these isolates did not carry PMQR genes investigated. The same virulence profile was observed among 69 S. Enteritidis isolates in which 11 virulence genes, except cdtB, were detected. The presence of virulence genes identified in invasive salmonellosis in the S. Enteritidis isolates with reduced susceptibility to ciprofloxacin could be of public health concerns. Our findings underline the need for constant monitoring of ciprofloxacin-resistant S. Enteritidis in poultry production chain to reduce public health risk.

Article Details

How to Cite
Suwannachot, N. ., Ketphan, W. ., Jittimanee, S., & Phuektes, P. (2023). Occurrence of ciprofloxacin resistance, plasmid-mediated quinolone resistance genes and virulence factors in Salmonella enterica serovar Enteritidis isolated from broilers in Thailand isolated from broilers in Thailand: https://doi.org/10.12982/VIS.2023.042. Veterinary Integrative Sciences, 21(2). Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/261584
Section
Research Articles

References

ACFS, 2017. Guidance on the application of Thai Agricultural Standard TAS 6901(G)-2017. Available online: https://www.acfs.go.th/standard/download/GAP_BROILER_FARM.pdf (In Thai)

Alvarez, J., Sota, M., Vivanco, A.B., Perales, I., Cisterna, R., Rementeria, A., Garaizar, J.,2004. Development of a multiplex PCR technique for detection and epidemiological typing of Salmonella in human clinical samples. J. Clin. Microbiol. 42, 1734–1738.

Amini, K., Salehi, T.Z., Nikbakht, G., Ranjbar, R., Amini, J., Ashrafganjooei, S.B., 2010. Molecular detection of invA and spv virulence genes in Salmonella Enteritidis isolated from human and animals in Iran. Afr. J. Microbiol. Res. 4, 2202-2210.

Ammar, A.M., Mohamed, A.A., Abd El-Hamid, M.I., El-Azzouny, M.M., 2016. Virulence genotypes of clinical Salmonella serovars from broilers in Egypt. J. Infect. Dev.Ctries. 10, 337-346.

Ammar, A.M., Abdeen, E.E., Abo-Shama, U.H., Fekry, E., Kotb Elmahallawy, E., 2019.Molecular characterization of virulence and antibiotic resistance genes among Salmonella serovars isolated from broilers in Egypt. Lett. Appl. Microbiol. 68,188–195.

Andesfha, E., Indrawati, A., Mayasari, N.L.P.I., Rahayuningtyas, I., Jusa, I., 2019. Detection of Salmonella pathogenicity island and Salmonella plasmid virulence genes in Salmonella Enteritidis originated from layer and broiler farms in Java Island. J. Adv.

Vet. Anim. Res. 6, 384.

Bahramianfard, H., Derakhshandeh, A., Naziri, Z., Khaltabadi Farahani, R., 2021. Prevalence, virulence factor and antimicrobial resistance analysis of Salmonella Enteritidis from poultry and egg samples in Iran. BMC vet. Res. 17, 196.

Balasubramanian, R., Im, J., Lee, J.S., Jeon, H.J., Mogeni, O.D., Kim, J.H.,Rakotozandrindrainy, R., Baker, S., Marks, F., 2019. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum. Vaccines. Immunother. 15, 1421–1426.

Borges, K.A., Furian, T.Q., Borsoi, A., Moraes, H.L.S., Salle, C.T.P., Nascimento, V.P., 2013.Detection of virulence-associated genes in Salmonella Enteritidis isolates from chicken in South of Brazil. Pesq. Vet. Bras. 33, 1416-1422.

Borges, K.A., Furian, T.Q., de Souza, S.N., Menezes, R., Salle, C.T.P., de Souza Moraes,H.L., Tondo, E.C., do Nascimento, V.P., 2017. Phenotypic and molecular characterization of Salmonella Enteritidis SE86 isolated from poultry and salmonellosis outbreaks. Foodborne. Pathog. Dis. 14, 742-754

Campioni, F., Zoldan, M.M., Falcão, J.P., 2014. Characterization of Salmonella Enteritidis strains isolated from poultry and farm environments in Brazil. Epidemiol. Infect.142, 1403-1410.

Campioni, F., Cao, G., Kastanis, G., Janies, D.A., Bergamini, A.M.M., Rodrigues, D.D.P.,Stones, R., Brown, E., Allard, M.W., Falcão, J.P., 2018. Changing of the genomic pattern of Salmonella Enteritidis Strains Isolated in Brazil over a 48 year-period revealed by Whole Genome SNP analyses. Sci. Rep. 8, 10478.

Castilla, K.S., Ferreira, C.S.A., Moreno, A.M., Nunes, I.A., Ferreira, A.J.P., 2006. Distribution of virulence genes sefC, pefA and spvC in Salmonella Enteritidis phage type 4 strains isolated in Brazil. Braz. J. Microbiol. 37, 135-139.

Chang, M.X., Zhang, J.F., Sun, Y.H., Li, R.S., Lin, X.L., Yang, L., Webber, M.A., Jiang, H.X.,2021. Contribution of different echanisms to ciprofloxacin resistance in Salmonella spp. Front. Microbiol. 12, 663731.

Chotinan, S., Tadee, P., 2015. Epidemiological survey of S. Enteritidis pulsotypes from salmonellosis outbreak in Chiang Mai and Samut Songkhram provinces, Thailand.Vet. Integr. Sci. 13, 73-80.

CLSI, 2017. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA: Pennsylvania.

CLSI, 2020. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA:Pennsylvania.

Cui, M., Zhang, P., Li, J., Sun, C., Song, L., Zhang, C., Zhao, Q., Wu, C., 2019. Prevalence and characterization of fluoroquinolone resistant Salmonella Isolated from an integrated broiler chicken supply chain. Front. Microbiol. 10, 1865.

Dashti, A.A., Jadaon, M.M., Abdulsamad, A.M., Dashti, H.M., 2009. Heat treatment of bacteria: A simple method of DNA extraction for molecular techniques. Kuwait.Med. J. 41(2), 117-122.

de Toro, M., Rojo-Bezares, B., Vinué, L., Undabeitia, E., Torres, C., Sáenz, Y., 2010. In vivo selection of aac(6')-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment. J. Antimicrob. Chemother. 65, 1945–1949.

Dimitrov, T., Udo, E.E., Albaksami, O., Kilani, A.A., Shehab, E.M.R., 2007. Ciprofloxacin treatment failure in a case of typhoid fever caused by Salmonella enterica serotype Paratyphi A with reduced susceptibility to ciprofloxacin. J. Med. Microbiol. 56,277–279.

Department of Livestock Development (DLD), 2010. Control Salmonella in Poultry. Available online: https://ratchakitcha.soc.go.th/documents/1859886.pdf (In Thai)

Elemfareji, O.I., Thong, K.L., 2013. Comparative Virulotyping of Salmonella typhi and Salmonella enteritidis. Indian J. Microbiol. 53, 410–417.

Galyov, E.E., Wood, M.W., Rosqvist, R., Mullan, P.B., Watson, P.R., Hedges, S., Wallis, T.S.,1997. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 25, 903-912.

García-Gil, A., Galán-Enríquez, C.S., Pérez-López, A., Nava, P., Alpuche-Aranda, C., Ortiz-Navarrete, V., 2018. SopB activates the Akt-YAP pathway to promote Salmonella survival within B cells. Virulence. 9, 1390–1402.

Gast, R.K., Jones, D.R., Guraya, R., Garcia, J.S., Karcher, D.M., 2022. Research note: internal organ colonization by Salmonella Enteritidis in experimentally infected layer pullets reared at different stocking densities in indoor cage-free housing. Poult sci, 101,102104.

Grimont, P.A., Weill, F.X., 2007. Antigenic Formulae of the Salmonella Serovars, 9th edition.WHO, France.

Haghjoo, E., Galán, J.E., 2004. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc.Natl. Acad. Sci. U.S.A. 101, 4614–4619.

Hengkrawit, K., Tangjade, C., 2022. Prevalence and Trends in Antimicrobial Susceptibility Patterns of Multi-Drug-Resistance Non-Typhoidal Salmonella in Central Thailand,2012-2019. Infect. drug resist. 15, 1305–1315.

Horiyama, T., Yamaguchi, A., Nishino, K., 2010. TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother. 65,1372–1376.

Jajere S.M., 2019. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World. 12, 504–521.

Kanaan, M.H.G., Khalil, Z.K., Khashan, H.T., Ghasemian, A., 2022. Occurrence of virulence factors and carbapenemase genes in Salmonella enterica serovar Enteritidis isolated from chicken meat and egg samples in Iraq. BMC Microbiol. 22, 1-8.

Karp, B.E., Campbell, D., Chen, J.C., Folster, J.P., Friedman, C.R., 2018. Plasmid-mediated quinolone resistance in human non-typhoidal Salmonella infections: An emerging public health problem in the United States. Zoonoses. Public. Health. 65, 838–849.

Kohn, M.A., Senyak J. Sample Size Calculators for designing clinical research. Available online: https://www.sample-size.net/ (Accessed on April 6, 2023)

Kim, J.E., Lee, Y.J., 2017. Molecular characterization of antimicrobial resistant non-typhoidal Salmonella from poultry industries in Korea. Ir. Vet. J. 70, 20.

Kuang, D., Zhang, J., Xu, X., Shi, W., Chen, S., Yang, X., Su, X., Shi, X., Meng, J., 2018.Emerging high-level ciprofloxacin resistance and molecular basis of resistance in Salmonella enterica from humans, food and animals. Int. J. Food Microbiol.280, 1–9.

Lee, S., Park, N., Yun, S., Hur, E., Song, J., Lee, H., Kim, Y., Ryu, S., 2021. Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human

salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019. Gut. Pathog. 13, 35.

Li, J., Hao, H., Sajid, A., Zhang, H., Yuan, Z., 2018. Fluoroquinolone Resistance in Salmonella: Mechanisms, Fitness, and Virulence. In: Mascellino, M.T. (Ed.), Salmonella - A Re-Emerging Pathogen. Available online: https://www.intechopen.com/chapters/60197

Martínez-Martínez, L., Pascual, A., Jacoby, G. A., 1998. Quinolone resistance from a transferable plasmid. Lancet. 351, 797–799.

Mezal, E.H., Sabol, A., Khan, M.A., Ali, N., Stefanova, R., Khan, A.A., 2014. Isolation and molecular characterization of Salmonella enterica serovar Enteritidis from poultry house and clinical samples during 2010. Food. Microbiol. 38, 67–74.

Murase, T., Phuektes, P., Ozaki, H., Angkititrakul, S., 2022. Prevalence of qnrS-positive Escherichia coli from chicken in Thailand and possible co-selection of isolates with plasmids carrying qnrS and trimethoprim-resistance genes under farm use of

trimethoprim. Poult. Sci. 101, 101538.

Na lampang, K., Chongsuvivatwong, V., Kitikoon, V., 2007. Pattern and determinant of antibiotics used on broiler farms in Songkhla province, southern Thailand. Trop. Anim. Health. Prod.39, 355–361.

Park, C.H., Robicsek, A., Jacoby, G.A., Sahm, D., Hooper, D.C., 2006. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme.Antimicrob. Agents. Chemother. 50(11), 3953–3955.

Pham Thanh, D., Karkey, A., Dongol, S., Ho Thi, N., Thompson, C.N., Rabaa, M.A., Arjyal,A., Holt, K.E., Wong, V., Tran Vu Thieu, N., Voong Vinh, P., Ha Thanh, T., Pradhan,A., Shrestha, S.K., Gajurel, D., Pickard, D., Parry, C.M., Dougan, G., Wolbers, M.,Dolecek, C., Thwaites, G.E., Basnyat, B., Baker, S., 2016. A novel ciprofloxacinresistant subclade of H58 Salmonella Typhi is associated with fluoroquinolone treatment failure. eLife, 5, e14003.

Pelyuntha, W., Sanguankiat, A., Kovitvadhi, A., Vongkamjan, K., 2022. Broad lytic spectrum of novel Salmonella phages on ciprofloxacin-resistant Salmonella contaminated in the broiler production chain. Vet. World. 15, 2039–2045.

Perestrelo S, Thongkamkoon P, Narongsak W, Amavisit P, 2016. Antimicrobial resistance profiles of Salmonella isolated from poultry farms in central Thailand. J. Kasetsart Vet. 26, 119-130.

Phongaran, D., Khang-Air, S., Angkititrakul, S., 2019. Molecular epidemiology and antimicrobial resistance of Salmonella isolates from broilers and pigs in Thailand.Vet. World. 12, 1311–1318.

Piekarska, K., Wołkowicz, T., Zacharczuk, K., Stepuch, A., Gierczyński, R., 2023. The Mechanisms Involved in the Fluoroquinolone Resistance of Salmonella enterica Strains Isolated from Humans in Poland, 2018-2019: The Prediction of Antimicrobial

Genes by In Silico Whole-Genome Sequencing. Pathogens (Basel, Switzerland).12, 193.

Ren, X., Li, M., Xu, C., Cui, K., Feng, Z., Fu, Y., Zhang, J., Liao, M., 2016. Prevalence and molecular characterization of Salmonella enterica isolates throughout an integrated broiler supply chain in China. Epidemiol. Infect. 144, 2989-2999.

Robicsek, A., Strahilevitz, J., Sahm, D.F., Jacoby, G.A., Hooper, D.C., 2006. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States.Antimicrob. Agents Chemother. 50, 2872–2874.

Roth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C., Domig, K.J., 2019. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 98, 1791–1804.

Shams, E., Firoozeh, F., Moniri, R., Zibaei, M., 2015. Prevalence of Plasmid-Mediated Quinolone Resistance Genes among Extended-Spectrum β -Lactamase-Producing Klebsiella pneumoniae Human Isolates in Iran. J. Pathog. 2015, 434391.

Siddiky, N.A., Sarker, M.S., Khan, M.S.R., Begum, R., Kabir, M.E., Karim, M.R., Rahman, M. T., Mahmud, A., Samad, M.A., 2021. Virulence and antimicrobial resistance profiles of Salmonella enterica serovars Isolated from Chicken at Wet Markets in

Dhaka, Bangladesh. Microorganisms. 9, 952.

Skyberg, J.A., Logue, C.M., Nolan, L.K., 2006. Virulence genotyping of Salmonella spp. with multiplex PCR. Avian dis. 50, 77–81.

Soto, S.M., Rodríguez, I., Rodicio, M.R., Vila, J., Mendoza, M.C., 2006. Detection of virulence determinants in clinical strains of Salmonella enterica serovar Enteritidis and mapping on macrorestriction profiles. J. Med. Microbiol. 55, 365–373.

Sripaurya, B., Ngasaman, R., Benjakul, S., Vongkamjan, K., 2019. Virulence genes and antibiotic resistance of Salmonella recovered from a wet market in Thailand. J. Food Saf. 39, e12601.

Sriyapai, P., Pulsrikarn, C., Chansiri, K., Nyamniyom, A., Sriyapai, T., 2021. Molecular Characterization of Cephalosporin and Fluoroquinolone Resistant Salmonella Choleraesuis Isolated from Patients with Systemic Salmonellosis in Thailand.Antibiotics. 10(7), 844.

Suez, J., Porwollik, S., Dagan, A., Marzel, A., Schorr, Y.I., Desai, P.T., Agmon, V.,McClelland, M., Rahav, G., Gal-Mor, O., 2013. Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans. PloS one. 8, e58449.

Swamy, S.C., Barnhart, H.M., Lee, M.D., Dreesen, D.W., 1996. Virulence determinants invA and spvC in salmonellae isolated from poultry products, wastewater, and human sources. Appl. Environ. Microbiol. 62, 3768–3771.

Tarabees, R., Elsayed, M.S., Shawish, R., Basiouni, S., Shehata, A.A., 2017. Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt. J. Infect. Dev. Ctries. 11, 314-319.

Tenhagen, B.A., Flor, M., Alt, K., Knüver, M.T., Buhler, C., Käsbohrer, A., Stingl, K., 2021. Association of antimicrobial resistance in Campylobacter spp. in broilers and turkeys with antimicrobial Use. Antibiotics (Basel). 10(6), 673.

Utrarachkij, F., Nakajima, C., Changkwanyeun, R., Siripanichgon, K., Kongsoi, S.,Pornruangwong, S., Changkaew, K., Tsunoda, R., Tamura, Y., Suthienkul, O.,Suzuki, Y., 2017. Quinolone resistance determinants of clinical Salmonella Enteritidis in Thailand. Microb. Drug. Resist. 23, 885–894.

Wang, M., Qazi, I.H., Wang, L., Zhou, G., Han, H., 2020. Salmonella virulence and immune escape. Microorganisms. 8, 407.

Wang, J., Li, J., Liu, F., Cheng, Y., Su, J., 2020. Characterization of Salmonella enterica Isolates from Diseased Poultry in Northern China between 2014 and 2018.Pathogens. 9(2), 95.

World Health Organization, 2019. Critically important antimicrobials for human medicine, 6th revision. Available online: https://www.who.int/publications/i/item/9789241515528

Whistler, T., Sapchookul, P., McCormick, D.W., Sangwichian, O., Jorakate, P., Makprasert,S., Jatapai, A., Naorat, S., Surin, U., Koosakunwat, S., Supcharassaeng, S.,Piralam, B., Mikoleit, M., Baggett, H.C., Rhodes, J., Gregory, C.J., 2018. Epidemiology and antimicrobial resistance of invasive non-typhoidal Salmonellosis in rural Thailand from 2006-2014. PLoS. 12, e0006718.

Yue, M., Liu, D., Li, X., Jin, S., Hu, X., Zhao, X., Wu, Y., 2022. Epidemiology, serotype and resistance of Salmonella isolates from a children’s hospital in Hangzhou, Zhejiang, China, 2006–2021. Infect. Drug. Resist. 4735-4748.

Zishiri, O. T., Mkhize, N., Mukaratirwa, S., 2016. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. Onderstepoort. J. Vet. Res. 83, a1067.