Antibiotic resistance genes in farm animal slaughterhouse wastes in Al-Dewanyiah province, Iraq https://doi.org/10.12982/VIS.2023.041

Main Article Content

Amjed Alsultan
Dhama Al-sallami
Mohammed Alsaadi

Abstract

Environment represents as a reservoir for emerging and disseminating of antibiotic resistance genes. Slaughterhouse waste is one of the important sources of antibiotic resistance genes (ARGs) even after treatment processes. This study was conducted to evaluate role of farm animal slaughterhouse in dissemination of antibiotics resistance in Al-Dewanyiah, Iraq. A total of eighty samples were collected from the central farm animal slaughterhouse. The detection was based on three mobile genetic elements and nine antibiotic resistance genes. The results showed that tetO & tetK are common resistance genes in the tested samples with great relative abundance 60%. While, MGE transposon (Tn3) was detected in 80% of the tested samples. Gene encoding resistance to quinolone, methicillin, aminoglycoside and β-lactamases were also detected in the tested samples. Presence of three class of integrons as a mobile genetic were tested and the results of type 1 recorded high abundance (P>0.05) as a compare with type 2 and type 3 integrons. Furthermore, concentrations of ARGs and MGEs per gram of sample were tested using qPCR. The genes encoding for tetracycline resistance and transposon (Tn3) were found in higher concentration (P>0.05) (copy number) per gram of slaughterhouse sediments comparing with the selected genes. Quantification of ARGs and MGEs in the slaughterhouse wastes indicates that those wastes represent as a hotspot for dissemination of antibiotic resistance to the environment. Low darning and no treatment for slaughterhouse wastes might increase abundance of ARGs and resistant bacteria in the natural environment.

Article Details

How to Cite
Alsultan, A., Al-sallami, D., & Alsaadi, M. (2023). Antibiotic resistance genes in farm animal slaughterhouse wastes in Al-Dewanyiah province, Iraq : https://doi.org/10.12982/VIS.2023.041. Veterinary Integrative Sciences, 21(2), 577–586. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/261612
Section
Research Articles

References

Aryal, S.C., Upreti, M.K., Sah, A.K., Ansari, M., Nepal, K., Dhungel, B., Adhikari, N., Lekhak, B., Rijal, K.R., 2020. Plasmid-mediated AmpC β-lactamase CITM and DHAM genes among gram-negative clinical isolates. Infect. Drug. Resist. 13, 4249-4261.

Cantas, L., Shah, S.Q., Cavaco, L.M., Manaia, C.M., Walsh, F., Popowska, M., Garelick, H.,Bürgmann, H., Sørum, H., 2013. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front. Microbiol. 4, 96.

Che, Y., Xia, Y., Liu, L., Li, A. D., Yang, Y., Zhang, T., 2019. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing.Microbiome. 7(1), 1-13.

Colavecchio, A., Cadieux, B., Lo, A., Goodridge, L.D., 2017. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family–a review. Front. Microbial. 8, 1108.

da Silva, G.C., Gonçalves, O.S., Rosa, J.N., França, K.C., Bossé, J.T., Santana, M.F.,Langford, P.R., Bazzolli, D.M.S., 2022. Mobile genetic elements drive antimicrobial resistance gene spread in pasteurellaceae species. Front. Microbial. 12, 1-14.

Esperón, F., Sacristán, C., Carballo, M., Torre, A. D. L., 2018. Antimicrobial resistance genes in animal manure, manure-amended and nonanthropogenically impacted soils in Spain. J. adv. Boil. 9(9), 469-480.

He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., Alvarez, P.J., 2020. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment.NPJ. Clean. Water. 3(1), 4.

Heuer, H., Smalla, K., 2007. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ. Microbiol. 9, 657–666.

Jeric, P.E., Lopardo, H., Vidal, P., Arduino, S., Fernandez, A., Orman, B.E., Centron, D., 2002.Multicenter study on spreading of the tet (M) gene in tetracycline-resistant Streptococcus group G and C isolates in Argentina. J. Antimicrob. Chemother. 46(1),239-241.

Kapoor, G., Saigal, S., Elongavan, A., 2017. Action and resistance mechanisms of antibiotics: a guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 33(3), 300-305.

Kim, S., Aga, D.S., 2007. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health. B. Crit. Rev. 10(8), 559-573.

Kunhikannan, S., Thomas, C.J., Franks, A.E., Mahadevaiah, S., Kumar, S., Petrovski, S., 2021. Environmental hotspots for antibiotic resistance genes. MicrobiologyOpen, 10,e1197.

Le Bouter, A., Leclercq, R., Cattoir, V., 2011. Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus saprophyticus clinical isolates.Int. J. Antimicrob. Agents. 37(2), 118-123.

Martinez, J.L., 2009. Environmental pollution by anti- biotics and by antibiotic resistance determinants. Environ. Pollut. 157, 2893–2902.

Maulana, K.Y., Pichpol, D., Farhani, N.R., Widiasih, D.A., Unger, F., Punyapornwithaya, V., Meeyam, T., 2021. Antimicrobial resistance characteristics of Extended Spectrum Beta Lactamase (ESBL)-producing Escherichia coli from dairy farms in the Sleman district of Yogyakarta province, Indonesia. Vet. Integr. Sci. 19(3), 525-535.

Mustafa, I., Hadiatullah and Sustiyah., 2017. Removal of humic acid from peat soils by using AlCl3 prior to DNA extraction. Available online: https://aip.scitation.org/doi/abs/10.1063/ 1.4983434

Neher, T.P., Ma, L., Moorman, T.B., Howe, A.C., Soupir, M.L., 2020. Catchment-scale export of antibiotic resistance genes and bacteria from an agricultural watershed in central Iowa. Plos One. 15(1), e0227136.

Nicolas, E., Lambin, M., Dandoy, D., Galloy, C., Nguyen, N., Oger, C.A., Hallet, B., 2015.The Tn3-family of replicative transposons. Microbiol. Spectr. 3(4).

Oliveira, P.H., Touchon, M., Cury, J., Rocha, E.P., 2017. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8(1), 841.

Pepper, I.L., Brooks, J.P., Gerba, C.P., 2018. Antibiotic resistant bacteria in municipal wastes:Is there reason for concern?. Environ. Sci. Technol. 52, 3949–3959.

Rather, I.A., Kim, B.C., Bajpai, V.K., Park, Y.H., 2017. Self-medication and antibiotic resistance: crisis, current challenges, and prevention. Saudi. J. Biol. Sci. 24(4),808-812.

Saekhow, P., Sriphannam, C., 2021. Prevalence of extended-spectrum beta-lactamaseproducing Escherichia coli strains in dairy farm wastewater in Chiang Mai. Vet.Integr. Sci. 19(3), 349-362.

Toubiana, M., Salles, C., Tournoud, M.G., Licznar-Fajardo, P., Zorgniotti, I., Trémélo, M.L.,Jumas-Bilak, E., Robert, S., Monfort, P., 2021. Monitoring urban beach quality on a summer day: Determination of the origin of fecal indicator bacteria and antimicrobial resistance at Prophète Beach, Marseille (France). Front. Microbiol. 12,710346.

Walsh, F., Ingenfeld, A., Zampicolli, M., Hilber-Bodmer, M., Frey, J.E., Duffy, B., 2011. Realtime PCR methods for quantitative monitoring of streptomycin and tetra- cycline resistance genes in agricultural ecosystems. J. Microbiol. Methods. 86, 150–155.

Waseem, H., Ali, J., Jamal, A., Ali, M. I., 2019. Potential dissemination of antimicrobial resistance from small scale poultry slaughterhouses in Pakistan. Appl. Ecol. Environ.Res. 17, 3049-3063.

Waseem, H., Williams, M.R., Stedtfeld, R.D, Hashsham, S.A., 2017. Antimicrobial resistance in the environment. Water. Environ. Res. 89(10), 921-941.

World Health Organization, 2019. Antimicrobial Resistance. Available online: fact-sheets/detail/antimicrobial-resistance.

Wright, G.D., 2010. Antibiotic resistance in the environment: a link to the clinic?. Curr. Opin.Microbiol. 13(5), 589-594.

Yao, W., Xu, G., Li, D., Bai, B., Wang, H., Cheng, H., Zheng, J., Sun, X., Lin, Z., Deng, Q., Yu, Z., 2019. Staphylococcus aureus with an erm-mediated constitutive macrolide-lincosamide-streptogramin B resistance phenotype has reduced susceptibility to the new ketolide, solithromycin. BMC Infect. Dis. 19, 1-8.

Zhao, F., Wang, B., Huang, K., Yin, J., Ren, X., Wang, Z., Zhang, X.X., 2023. Correlations among antibiotic resistance genes, mobile genetic elements and microbial communities in municipal sewage treatment plants revealed by high-throughput sequencing. Int. J. Environ. Res. Public. Health. 20(4), 3593.