Current progress in diagnostics, therapeutics, and vaccines for African swine fever virus https://doi.org/10.12982/VIS.2023.054
Main Article Content
Abstract
African Swine Fever Virus (ASFV) is a highly contagious viral disease that affects domestic and wild pigs. Due to its high mortality rate and rapid spread, it poses a significant threat to the global swine industry. There is currently no effective treatment for ASFV, and control strategies rely on early detection and culling of infected animals. Therefore, developing efficient diagnostics, therapeutics, and vaccines for ASFV is crucial for preventing its spread and minimizing the economic losses associated with outbreaks. In recent years, significant progress has been made in developing diagnostic tools for ASFV, including serological, molecular, and cell-based assays. Therapeutic interventions for ASFV are limited, with no approved treatments currently available. However, recent studies have explored the potential of antiviral drugs and immunomodulators as potential therapies for ASFV. Meanwhile, vaccines have been developed using different platforms, including live attenuated viruses, subunit vaccines, and viral vectors. Some of these vaccines have shown promising results in inducing both humoral and cell-mediated immune responses, but challenges remain in terms of vaccine efficacy. Therefore, significant progress has been made in developing diagnostics, therapeutics, and vaccines for ASFV, but much work remains to be done. Further research is needed to improve the efficacy and safety of current interventions and to develop new tools for controlling ASFV globally.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Achenbach, J.E., Gallardo, C., Nieto-Pelegrín, E., Rivera-Arroyo, B., Degefa-Negi, T., Arias, M., Jenberie, S., Mulisa, D.D., Gizaw, D., Gelaye, E., Chibssa, T.R., Belaye, A.,Loitsch, A., Forsa, M., Yami, M., Diallo, A., Soler, A., Lamien, C.E., Sánchez-Vizcaíno, J.M., 2017. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound. Emerg. Dis. 64(5), 1393-1404.
Alejo, A., Matamoros, T., Guerra, M., Andrés, G., 2018. A proteomic atlas of the African swine fever virus particle. J. Virol. 92(23), e01293-01218.
Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., Escribano, J.M., Ictv Report Consortium, 2018. ICTV virus taxonomy profile: Asfarviridae. J. Gen. Virol. 99, 613–614.
Andrés, G., Charro, D., Matamoros, T., Dillard, R.S., Abrescia, N.G.A., 2020. The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. J. Biol. Chem. 295,
–12.
Arabyan, E., Hakobyan, A., Kotsinyan, A., Karalyan, Z., Arakelov, V., Arakelov, G.,Nazaryan, K., Simonyan, A., Aroutiounian, R., Ferreira, F., Zakaryan, H., 2018.Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antiviral. Res. 156, 128–137.
Arabyan, E., Kotsynyan, A., Hakobyan, A., Zakaryan, H., 2019. Antiviral agents against African swine fever virus. Virus. Res. 270, 197669.
Argilaguet, J.M., Pérez-Martín, E., López, S., Goethe, M., Escribano, J.M., Giesow, K., Keil,G.M., Rodríguez, F., 2013. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral. Res. 98, 61–65.
Argilaguet, J.M., Pérez-Martín, E., Nofrarías, M., Gallardo, C., Accensi, F., Lacasta, A., Mora, M., Ballester, M., Galindo-Cardiel, I., López-Soria, S., Escribano, J.M.,Reche, P.A., Rodríguez, F., 2012. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS. One. 7(9),e40942.
Arias, M., de la Torre, A., Dixon, L., Gallardo, C., Jori, F., Laddomada, A., Martins, C.,Parkhouse, R.M., Revilla, Y., Rodriguez, F.A.J., 2017. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines (Basel). 5(4), 35.
Blome, S., Franzke, K., Beer, M., 2020. African swine fever – a review of current knowledge. Virus. Res. 287, 198099.
Blome, S., Gabriel, C., Beer, M., 2014. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine. 32, 3879–3882.
Blome, S., Gabriel, C., Beer, M., 2013. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus. Res. 173, 122–130.
Borca, M.V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S., Holinka, L.G.,Velazquez-Salinas, L., Zhu, J., Gladue, D.P., 2020. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic eurasia strain. J. Virol. 94(7), e02017-2019.
Chen, W., Zhao, D., He, X., Liu, R., Wang, Z., Zhang, X., Li, F., Shan, D., Chen, H., Zhang, J., Wang, L., Wen, Z., Wang, X., Guan, Y., Liu, J., Bu, Z., 2020. A seven-genedeleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China. Life. Sci. 63, 623–634.
Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., Ståhl, K., 2019. Epidemiological considerations on African swine fever in Europe 2014–2018. Porc. Health. Manag. 5, 1–10.
Colgrove, G.S., Haelterman, E.O., Coggins, L., 1969. Pathogenesis of African swine fever in young pigs. Am. J. Vet. Res. 30, 1343–1359.
Cuesta-Geijo, M.A., Galindo, I., Hernáez, B., Quetglas, J.I., Dalmau-Mena, I., Alonso, C.,2012. Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry. PLoS One. 7(11), e48853.
Cui, H., Yang, J., Yang, B., Hao, Y., Shi, X., Zhang, D., Yang, X., Zhang, T., Zhao, D., Yuan,X., Chen, X., Liu, X., Zheng, H., Zhang, K., 2023. Cyproheptadine hydrochloride inhibits African swine fever viral replication in vitro. Microb. Pathog. 175, 105957.
Davies, K., Goatley, L.C., Guinat, C., Netherton, C.L., Gubbins, S., Dixon, L.K., Reis, A.L.,2017. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transbound. Emerg. Dis. 64, 425–431.
de Carvalho Ferreira, H.C., Weesendorp, E., Quak, S., Stegeman, J.A., Loeffen, W.L.A.,2013. Quantification of airborne African swine fever virus after experimental infection. Vet. Microbiol. 165, 243–251.
de Carvalho Ferreira, H.C., Zúquete, S.T., Wijnveld, M., Weesendorp, E., Jongejan, F.,Stegeman, A., Loeffen, W.L., 2014. No evidence of African swine fever virus replication in hard ticks. Ticks. Tick. Borne. Dis. 5, 582–589.
Dee, S.A., Bauermann, F.V., Niederwerder, M.C., Singrey, A., Clement, T., De Lima, M.,Long, C., Patterson, G., Sheahan, M.A., Stoian, A.M., 2018. Survival of viral pathogens in animal feed ingredients under transboundary shipping models. PloS.
One. 13, e0194509.
Dhandapani, G., Nguyen, V.G., Kim, M.C., Noh, J.Y., Jang, S.S., Yoon, S.-W., Jeong, D.G.,Huynh, T.M.L., Le, V.P., Song, D., Kim, H.K., 2023. Magnetic-bead-based DNA-capture-assisted real-time polymerase chain reaction and recombinase polymerase
mplification for the detection of African swine fever virus. Arch. Virol.168, 21.
Diamond, M.S., Farzan, M., 2013. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13, 46–57.
Dixon, L.K., Chapman, D.A., Netherton, C.L., Upton, C., 2013. African swine fever virus replication and genomics. Virus. Res. 173(1), 3-14.
Euler, M., Wang, Y., Nentwich, O., Piepenburg, O., Hufert, F.T., Weidmann, M., 2012.Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus. J. Clin. Virol. 54, 308–312.
Frączyk, M., Woźniakowski, G., Kowalczyk, A., Niemczuk, K., Pejsak, Z., 2016. Development of cross‐priming amplification for direct detection of the African Swine Fever Virus, in pig and wild boar blood and sera samples. Lett. Appl. Microbiol. 62, 386–391.
Frant, M., Woźniakowski, G., Pejsak, Z., 2017. African swine fever (ASF) and ticks. No risk of tick-mediated ASF spread in Poland and Baltic states. J. Vet. Res. 61, 375–380.
Frouco, G., Freitas, F.B., Martins, C., Ferreira, F., 2017. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14. Virus. Res. 242, 24–29.
Fu, J., Zhang, Y., Cai, G., Meng, G., Shi, S., 2021. Rapid and sensitive RPA-Cas12afluorescence assay for point-of-care detection of African swine fever virus. PLOS.ONE. 16, e0254815.
Galindo, I., Alonso, C., 2017. African swine fever virus: a review. Viruses. 9, 103. Galindo, I., Cuesta-Geijo, M.A., Hlavova, K., Muñoz-Moreno, R., Barrado-Gil, L., Dominguez, J., Alonso, C., 2015. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus. Res. 200, 45–55.
Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gómez, C., Fernandez-Pinero, J., Arias, M.,2019. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 66, 1399–1404.
Gao, Y., Meng, X.-Y., Zhang, H., Luo, Y., Sun, Y., Li, Y., Abid, M., Qiu, H.-J., 2018. Crosspriming amplification combined with immunochromatographic strip for rapid on-site detection of African swine fever virus. Sens. Actuators. B. Chem. 274, 304–309.
Gaudreault, N.N., Richt, J.A., 2019. Subunit vaccine approaches for African swine fever virus. Vaccines. 7, 56.
Gladue, D.P., Ramirez-Medina, E., Vuono, E., Silva, E., Rai, A., Pruitt, S., Espinoza, N.,Velazquez-Salinas, L., Borca, M.V., 2021. Deletion of the A137R gene from the pandemic strain of African swine fever virus attenuates the strain and offers protection against the virulent pandemic virus. J. Virol. 95(21), e0113921.
Gómez-Villamandos, J.C., Bautista, M.J., Sánchez-Cordón, P.J., Carrasco, L., 2013. Pathology of African swine fever: The role of monocyte-macrophage. Virus. Res.173(1), 140-149.
Goulding, L.V., Kiss, E., Goatley, L., Vrancken, R., Goris, N.E.J., Dixon, L., 2022a. In vitro and in vivo antiviral activity of nucleoside analogue cHPMPC against African swine fever virus replication. Antiviral. Res. 208, 105433.
Goulding, L.V., Kiss, E., Vrancken, R., Goris, N., Luo, M., Groaz, E., Herdewijn, P., Dixon, L., 2022. O-2-Alkylated cytosine acyclic nucleoside phosphonamidate prodrugs display pan-genotype antiviral activity against African swine fever virus. mSphere.
(6), e0037822.
Hakobyan, A., Arabyan, E., Avetisyan, A., Abroyan, L., Hakobyan, L., Zakaryan, H., 2016. Apigenin inhibits African swine fever virus infection in vitro. Arch. Virol. 161, 3445–3453.
Hakobyan, A., Arabyan, E., Kotsinyan, A., Karalyan, Z., Sahakyan, H., Arakelov, V., Nazaryan, K., Ferreira, F., Zakaryan, H., 2019. Inhibition of African swine fever virus infection by genkwanin. Antiviral. Res. 167, 78–82.
Hakobyan, A., Galindo, I., Nañez, A., Arabyan, E., Karalyan, Z., Chistov, A.A., Streshnev,P.P., Korshun, V.A., Alonso, C., Zakaryan, H., 2018. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. J. Gen.Virol. 99, 148–156.
Huang, L., Li, H., Ye, Z., Xu, Q., Fu, Q., Sun, W., Qi, W., Yue, J., 2021. Berbamine inhibits Japanese encephalitis virus (JEV) infection by compromising TPRMLsmediated endolysosomal trafficking of low-density lipoprotein receptor (LDLR). Emerg. Microbes Infect. 10, 1257–1271.
Huang, Z., Gong, L., Zheng, Z., Gao, Q., Chen, Xiongnan, Chen, Y., Chen, Xiaojun, Xu, R.,Zheng, J., Xu, Z., Zhang, S., Wang, H., Zhang, G., 2021. GS-441524 inhibits African swine fever virus infection in vitro. Antiviral. Res. 191, 105081.
Jiang, W., Jiang, D., Li, L., Wan, B., Wang, J., Wang, P., Shi, X., Zhao, Q., Song, J., Zhu, Z., Ji, P., Zhang, G., 2022. Development of an indirect ELISA for the identification of African swine fever virus wild-type strains and CD2v-deleted strains. Front. Vet. Sci. 9, 1006895.
Kazakova, A.S., Imatdinov, I.R., Dubrovskaya, O.A., Imatdinov, A.R., Sidlik, M.V., Balyshev, V.M., Krasochko, P.A., Sereda, A.D., 2017. Recombinant protein p30 for serological diagnosis of African swine fever by immunoblotting assay. Transbound.
Emerg. Dis. 64(5), 1479-1492.
Lacasta, A., Ballester, M., Monteagudo, P.L., Rodríguez, J.M., Salas, M.L., Accensi, F., Pina-Pedrero, S., Bensaid, A., Argilaguet, J., López-Soria, S., Hutet, E., Le Potier, M.F., Rodríguez, F., 2014. Expression library immunization can confer protection against lethal challenge with African swine fever virus. J. Virol. 88, 13322–13332.
Levanova, A., Poranen, M.M., 2018. RNA Interference as a prospective tool for the control of human viral infections. Front. Microbiol. 9, 2151.
Li, D., Zhang, Q., Liu, Y., Wang, M., Zhang, L., Han, L., Chu, X., Ding, G., Li, Y., Hou, Y., Liu, S., Wang, Z., Xiao, Y., 2022. Indirect ELISA using multi-antigenic dominants of p30, p54 and p72 recombinant proteins to detect antibodies against African swine
fever virus in pigs. Viruses. 14(12), 2660.
Li, J., Jiao, J., Liu, N., Ren, S., Zeng, H., Peng, J., Zhang, Y., Guo, L., Liu, F., Lv, T., Chen, Z., Sun, W., Hrabchenko, N., Yu, J., Wu, J., 2023. Novel p22 and p30 dualproteins combination based indirect ELISA for detecting antibodies against African swine fever virus. Front. Vet. Sci. 10, 133.
Li, L., Qiao, S., Li, G., Tong, W., Dong, S., Liu, J., Guo, Z., Zheng, H., Zhao, R., Tong, G.,Zhou, Y., Gao, F., 2022. The indirect ELISA and monoclonal antibody against African swine fever virus p17 revealed efficient detection and application prospects.
Viruses. 15(1), 50.
Li, X., Hu, Y., Liu, Penggang, Zhu, Z., Liu, Paorao, Chen, C., Wu, X., 2022. Development and application of a duplex real-time PCR assay for differentiation of genotypes I and II African swine fever viruses. Transbound. Emerg. Dis. 69, 2971–2979.
Li, Z., Wei, J., Di, D., Wang, X., Li, C., Li, B., Qiu, Y., Liu, K., Gu, F., Tong, M., Wang, S., Wu, X., Ma, Z., 2020. Rapid and accurate detection of African swine fever virus by DNA endonuclease-targeted CRISPR trans reporter assay. Acta Biochim. Biophys.
Sin. 52, 1413–1419.
Lithgow, P., Takamatsu, H., Werling, D., Dixon, L., Chapman, D., 2014. Correlation of cell surface marker expression with African swine fever virus infection. Vet. Microbiol.168, 413–419.
Liu, H., Shi, K., Sun, W., Zhao, J., Yin, Y., Si, H., Qu, S., Lu, W., 2021. Development a multiplex RT-PCR assay for simultaneous detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. J. Virol. Methods. 287,
Lokhandwala, S., Waghela, S.D., Bray, J., Martin, C.L., Sangewar, N., Charendoff, C., Shetti, R., Ashley, C., Chen, C.H., Berghman, L.R., Mwangi, D., Dominowski, P.J., Foss, D.L., Rai, S., Vora, S., Gabbert, L., Burrage, T.G., Brake, D., Neilan, J., Mwangi, W.,
Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens. Clin. Vaccine. Immunol.CVI 23, 888–900.
Lokhandwala, S., Waghela, S.D., Bray, J., Sangewar, N., Charendoff, C., Martin, C.L.,Hassan, W.S., Koynarski, T., Gabbert, L., Burrage, T.G., Brake, D., Neilan, J.,Mwangi, W., 2017. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine. PLOS. ONE. 12, e0177007.
Ma, C., Li, S., Yang, F., Cao, W., Liu, H., Feng, T., Zhang, K., Zhu, Z., Liu, X., Hu, Y.,Zheng, H., 2022. FoxJ1 inhibits African swine fever virus replication and viral S273R protein decreases the expression of FoxJ1 to impair its antiviral effect. Virol. Sin. 37, 445–454.
Malmquist, W.A., Hay, D., 1960. Hemadsorption and cytopathic effect produced by African swine fever virus in swine bone marrow and buffy coat cultures. Am. J. Vet. Res. 21,104–108.
Mazur-Panasiuk, N., Żmudzki, J., Woźniakowski, G., 2019. African swine fever virus – persistence in different environmental conditions and the possibility of its indirect transmission. J. Vet. Res. 63, 303–310.
Miao, F., Zhang, J., Li, N., Chen, T., Wang, L., Zhang, F., Mi, L., Zhang, J., Wang, S., Wang,Y., Zhou, X., Zhang, Y., Li, M., Zhang, S., Hu, R., 2019. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting
African swine fever virus. Front. Microbiol. 10, 1004.
Mottola, C., Freitas, F.B., Simões, M., Martins, C., Leitão, A., Ferreira, F., 2013. In vitro antiviral activity of fluoroquinolones against African swine fever virus. Vet. Microbiol. 165(1-2), 86-94.
Muñoz-Moreno, R., Cuesta-Geijo, M.Á., Martínez-Romero, C., Barrado-Gil, L., Galindo, I.,García-Sastre, A., Alonso, C., 2016. Antiviral role of IFITM proteins in African swine fever virus infection. PLOS. ONE. 11, e0154366.
Niederwerder, M.C., Stoian, A.M., Rowland, R.R., Dritz, S.S., Petrovan, V., Constance, L.A., Gebhardt, J.T., Olcha, M., Jones, C.K., Woodworth, J.C., 2019. Infectious dose of African swine fever virus when consumed naturally in liquid or feed. Emerg. Infect.
Dis. 25, 891.
Nurmoja, I., Petrov, A., Breidenstein, C., Zani, L., Forth, J.H., Beer, M., Kristian, M., Viltrop, A., Blome, S., 2017. Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transbound. Emerg. Dis. 64, 2034–2041.
OIE, 2022. Global situation of African swine fever. World Organization for Animal Health,Paris, pp. 1-2.
OIE, 2022. Manual of diagnostic tests and vaccines for terrestrial animals 2021. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/A_summry.htm (Accessed on March,26, 2023).
Olesen, A.S., Hansen, M.F., Rasmussen, T.B., Belsham, G.J., Bødker, R., Bøtner, A., 2018.Survival and localization of African swine fever virus in stable flies (Stomoxys calcitrans) after feeding on viremic blood using a membrane feeder. Vet. Microbiol.
, 25–29.
Olesen, A.S., Lohse, L., Boklund, A., Halasa, T., Gallardo, C., Pejsak, Z., Belsham, G.J.,Rasmussen, T.B., Bøtner, A., 2017. Transmission of African swine fever virus from infected pigs by direct contact and aerosol routes. Vet. Microbiol. 211, 92–102.
Oura, C.A.L., Edwards, L., Batten, C.A., 2013. Virological diagnosis of African swine fever—Comparative study of available tests. Virus. Res. 173, 150–158.
Pietschmann, J., Guinat, C., Beer, M., Pronin, V., Tauscher, K., Petrov, A., Keil, G., Blome,S., 2015. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus
isolate. Arch. Virol. 160, 1657–1667.
Popescu, L., Gaudreault, N.N., Whitworth, K.M., Murgia, M.V., Nietfeld, J.C., Mileham,A., Samuel, M., Wells, K.D., Prather, R.S., Rowland, R.R.R., 2017. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology. 501, 102–106.
Qian, K., Gao, A., Zhu, M., Shao, H., Jin, W., Ye, J., Qin, A., 2014. Genistein inhibits the replication of avian leucosis virus subgroup J in DF-1 cells. Virus. Res. 192,114–120.
Qian, S., Fan, W., Qian, P., Zhang, D., Wei, Y., Chen, H., Li, X., 2015. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses. 7,1613–1626.
Qiu, Z., Li, Z., Yan, Q., Li, Y., Xiong, W., Wu, K., Li, X., Fan, S., Zhao, M., Ding, H., Chen,J., 2021. Development of diagnostic tests provides technical support for the control of African swine fever. Vaccines. 9, 343.
Ramirez-Medina, E., Vuono, E., Rai, A., Pruitt, S., Espinoza, N., Velazquez-Salinas, L.,Pina-Pedrero, S., Zhu, J., Rodriguez, F., Borca, M.V., Gladue, D.P., 2022. Deletion of E184L, a putative DIVA target from the pandemic strain of African swine fever virus, produces a reduction in virulence and protection against virulent challenge. J.Virol. 96, e0141921.
Ray, A.S., Fordyce, M.W., Hitchcock, M.J.M., 2016. Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antiviral. Res.125, 63–70.
Reis, A.L., Netherton, C., Dixon, L.K., 2017. Unraveling the armor of a killer: evasion of host defenses by African swine fever virus. J. Virol. 91(6), e02338-16. Salas, M.L., Andrés, G., 2013. African swine fever virus morphogenesis. Virus. Res. 173,29–41.
Salguero, F.J., 2020. Comparative pathology and pathogenesis of African swine fever infection in swine. Front. Vet. Sci. 7, 282.
Sánchez-Vizcaíno, J.M., Mur, L., Gomez-Villamandos, J.C., Carrasco, L., 2015. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 152, 9–21.
Sastre, P., Gallardo, C., Monedero, A., Ruiz, T., Arias, M., Sanz, A., Rueda, P., 2016. Development of a novel lateral flow assay for detection of African swine fever in blood. BMC. Vet. Res. 12, 206.
Sauter, D., Schwarz, S., Wang, K., Zhang, R., Sun, B., Schwarz, W., 2014. Genistein as antiviral drug against HIV ion channel. Planta. Med. 80, 682–687.
Sindryakova, I.P., Morgunov, Y.P., Chichikin, A.Y., Gazaev, I.K., Kudryashov, D.A.,Tsybanov, S.Z., 2016. The influence of temperature on the Russian isolate of African swine fever virus in pork products and feed with extrapolation to natural
conditions. Sel’skokhozyaistvennaya. Biol. 51, 467–474.
Stedman, C., 2014. Sofosbuvir, a NS5B polymerase inhibitor in the treatment of hepatitis C: a review of its clinical potential. Ther. Adv. Gastroenterol. 7, 131–140.
Teklue, T., Sun, Y., Abid, M., Luo, Y., Qiu, H.-J., 2020. Current status and evolving approaches to African swine fever vaccine development. Transbound. Emerg. Dis.67, 529–542.
Vlasova, N.N., Varentsova, A.A., Shevchenko, I.V., Zhukov, I.Y., Remyga, S.G., Gavrilova, V.L., Puzankova, O.S., Shevtsov, A.A., Zinyakov, N.G., Gruzdev, K.N., 2015.
Comparative analysis of clinical and biological characteristics of African swine fever virus isolates from 2013 year Russian Federation. Br. Microbiol. Res. J. 5, 203–215.
Wang, D., Yu, J., Wang, Y., Zhang, M., Li, P., Liu, M., Liu, Y., 2020. Development of a realtime loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). J. Virol. Methods. 276, 113775.
Wang, Jun, Yang, G., Zhang, L., Zhang, J., Wang, Jing, Zou, Y., Wang, Jiufeng, 2022. Berbamine hydrochloride inhibits bovine viral diarrhea virus replication via interfering in late-stage autophagy. Virus. Res. 321, 198905.
Wang, Y., Dai, J., Liu, Y., Yang, J., Hou, Q., Ou, Y., Ding, Y., Ma, B., Chen, H., Li, M., Sun, Y., Zheng, H., Zhang, K., Wubshet, A.K., Zaberezhny, A.D., Aliper, T.I., Tarasiuk, K., Pejsak, Z., Liu, Z., Zhang, Y., Zhang, J., 2021. Development of a potential penside colorimetric LAMP assay using neutral red for detection of African swine fever virus. Front. Microbiol. 12, 609821.
Wang, Y., Xu, L., Noll, L., Stoy, C., Porter, E., Fu, J., Feng, Y., Peddireddi, L., Liu, X., Dodd, K.A., Jia, W., Bai, J., 2020. Development of a real-time PCR assay for detection of African swine fever virus with an endogenous internal control. Transbound. Emerg.
Dis. 67, 2446–2454.
Wilkins, C., Woodward, J., Lau, D.T.-Y., Barnes, A., Joyce, M., McFarlane, N., McKeating, J.A., Tyrrell, D.L., Gale Jr., M., 2013. IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology. 57, 461–469.
Wu, K., Liu, J., Wang, L., Fan, S., Li, Z., Li, Y., Yi, L., Ding, H., Zhao, M., Chen, J., 2020.Current state of global African swine fever vaccine development under the prevalence and transmission of ASF in China. Vaccines (Basel). 8(3), 531.
Xu, G., Hu, L., Zhong, H., Wang, H., Yusa, S., Weiss, T.C., Romaniuk, P.J., Pickerill, S., You, Q., 2012. Cross priming amplification: Mechanism and optimization for isothermal DNA amplification. Sci. Rep. 2, 246.
Xu, J., Xu, Z., Zheng, W., 2017. A review of the antiviral role of green tea catechins. Molecules. 22, 1337.
Yang, B., Shi, Z., Ma, Y., Wang, L., Cao, L., Luo, J., Wan, Y., Song, R., Yan, Y., Yuan, K.,Tian, H., Zheng, H., 2022. LAMP assay coupled with CRISPR/Cas12a system for portable detection of African swine fever virus. Transbound. Emerg. Dis. 69, e216–e223.
Zakaryan, H., Arabyan, E., Oo, A., Zandi, K., 2017. Flavonoids: promising natural compounds against viral infections. Arch. Virol. 162, 2539–2551.
Zhai, Y., Ma, P., Fu, X., Zhang, L., Cui, P., Li, H., Yan, W., Wang, H., Yang, X., 2020. A recombinase polymerase amplification combined with lateral flow dipstick for rapid and specific detection of African swine fever virus. J. Virol. Methods 285, 113885.
Zhan, Y., Chen, Q., Song, Y., Wei, X., Zhao, T., Chen, B., Li, C., Zhang, W., Jiang, Y., Tan, Y.,Du, B., Xiao, J., Wang, K., 2022. Berbamine Hydrochloride inhibits lysosomal acidification by activating Nox2 to potentiate chemotherapy-induced apoptosis via the ROS-MAPK pathway in human lung carcinoma cells. Cell. Biol. Toxicol. 1, 1-21.
Zhang, J., Zhang, Y., Chen, T., Yang, Jinjin, Yue, H., Wang, L., Zhou, X., Qi, Y., Han, X., Ke,J., Wang, S., Yang, Jinmei, Miao, F., Zhang, S., Zhang, F., Wang, Y., Li, M., Hu,R., 2021. Deletion of the L7L-L11L genes attenuates ASFV and induces protection against homologous challenge. Viruses. 13, 255.
Zhang, Z.-R., Zhang, Y.-N., Zhang, H.-Q., Zhang, Q.-Y., Li, N., Li, Q., Deng, C.-L., Zhang, B., Li, X.-D., Ye, H.-Q., 2022. Berbamine hydrochloride potently inhibits SARSCoV-2 infection by blocking S protein-mediated membrane fusion. PLoS Negl. Trop.
Dis. 16, e0010363.
Zhong, K., Zhu, M., Yuan, Q., Deng, Z., Feng, S., Liu, D., Yuan, X., 2022. Development of an indirect ELISA to detect African swine fever virus pp62 protein-specific antibodies. Front. Vet. Sci. 8, 1627.
Zhu, J., Huang, L., Gao, F., Jian, W., Chen, H., Liao, M., Qi, W., 2023. Berbamine hydrochloride inhibits African swine fever virus infection In Vitro. Molecules.28, 170.