Review on anti-microbial resistance patterns of staphylococcus aureus isolated from mastitic cow’s milk: Ethiopian context https://doi.org/10.12982/VIS.2024.001

Main Article Content

Biniyam Gebre

Abstract

Aim of this paper is to review antimicrobial resistance profile of Staphylococcus aureus (S. aureus) isolated from mastitic cow milk in Ethiopia between 2013- 2023. S. aureus causes chronic intramammary infections, causing financial losses and challenging antimicrobial therapy globally. In Ethiopia meta-analysis of the pooled prevalence of bovine mastitis was 47.6% showing S. aureus as the major isolates accounting for 13.4% and 16.5% of clinical and subclinical mastitis. In Ethiopia, there are indication of the misuse of antibiotics coupled with the rapid spread of resistant bacterial nature and inadequate surveillance, which contributed to the problem. According to this review resistance profile of S. aureus studied in Ethiopia, the bulk of tested isolates showed alarmingly high levels of resistance to widely used antimicrobial drugs for the treatment of mastitis, particularly penicillin G and tetracycline. Variuos studies warned low susceptibility of S. aureus to commonly used antimicrobials such as penicillin G and tetracycline as a great concern because this antibiotic represents the main antibiotic group recommended for staphylococcal mastitis infection in Ethiopia. If essential steps to stop the indiscriminate use of antibiotics are not implemented, the prevalence of antibiotic-resistant S. aureus could rise posing major risks to both animal and human health. Therefore, conducting regular antimicrobial sensitivity testing before treatment helps select effective antibiotics which reduce the development of resistance to commonly used antibiotics. Further studies should be conducted to detect antimicrobial resistant strains, continiuos surveillance and monitoring of S. aureus to prevent the spread of milk-borne drug-resistant strains throughout communities.

Article Details

How to Cite
Gebre, B. (2023). Review on anti-microbial resistance patterns of staphylococcus aureus isolated from mastitic cow’s milk: Ethiopian context : https://doi.org/10.12982/VIS.2024.001. Veterinary Integrative Sciences, 22(1), 1–17. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/262883
Section
Review Article

References

Ashraf, A., Imran, M., 2020. Causes, types, etiological agents, prevalence, diagnosis,treatment, prevention, effects on human health and future aspects of bovine mastitis.Anim. Health. Res. Rev. 21(1), 36-49.

Aslantas, O., Demir, C., 2016. Investigation of the antibiotic resistance and biofilm-forming ability of S. aureus from subclinical bovine mastitis cases. J. Dairy. Sci. 99(11),8607-8613.

Asli, A., Brouillette, E., Ster, C., Ghinet, M.G., Brzezinski, R., Lacasse, P., Malouin, F., 2017. Antibiofilm and antibacterial effects of specific chitosan molecules on S. aureus isolates associated with bovine mastitis. PloS. One. 12(5), e0176988.

Asmelash, T., Mesfin, N., Addisu, D., Aklilu, F., Biruk, T. Tesfaye, S., 2016. Isolation, identification and drug resistance patterns of methicillin resistant S. aureus from mastitic cows milk from selected dairy farms in and around Kombolcha, Ethiopia. J.Vet. Med. Anim. Health. 8, 1-10.

Balemi, A., Gumi, B., Amenu, K., Girma, S., Gebru, M.U., Tekle, M., Rius, A.A., D’Souza, D.H., Agga, G.E., Kerro Dego, O., 2021. Prevalence of mastitis and antibiotic resistance of bacterial isolates from CMT positive milk samples obtained from dairy cows, camels, and goats in two pastoral districts in Southern Ethiopia.Animals. 11(6), p.1530.

Babic, M., Paji´c, M., Nikoli´c, A., Teodorovi´c, V., Mirilovi´c, M., Milojevi´c, L., Velebit,B., 2018. Expression of toxic shock syndrome toxin-1 gene of S. aureus in milk: proof of concept. S. aureus in milk. Mljekarstvo. 68, 12–20.

Beyene, G.F., 2016. Antimicrobial susceptibility of S. aureus in cow milk, Afar Ethiopia. Int. j. modern. chem. appl. Sci. 3(1), 280-283.

Beyene, T., Hayishe, H., Gizaw, F., Beyi, A.F., Abunna, F., Mammo, B., Abdi, R.D., 2017. Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia. BMC. Res. Notes. 10(1), 171.

Bitrus, A., Peter, O., Abbas, M., Goni, M., 2018. Staphylococcus aureus: a review of antimicrobial resistance mechanisms. Vet. Sci. Res. Rev. 4(2), 43-54.

Bush, K., Bradford, P.A., 2016. β-Lactams and β-lactamase inhibitors: an overview. Cold.Spring. Harb. Perspect. Med. 6(8), a025247.

De Jong, A., Garch, F.E., Simjee, S., Moyaert, H., Rose, M., Youala, M., 2018. Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Vet. Microbiol. 213, 73-81.

Derib, B.T., Birhanu, B.T. Sisay, T., 2017. Isolation and identification of Methicilin Resistant Staphylcoccus Aureus (MRSA) from bovine mastitic milk in and around Wolaita Sodo, Southern Ethiopia. J. Vet. Sci. Res. 2(3), p.000136.

Dini, M., Shokoohizadeh, L., Jalilian, F.A., Moradi, A., Arabestani, M.R., 2019. Genotyping and characterization of prophage patterns in clinical isolates of Staphylococcus aureus. BMC. Res. Notes. 12(1), 669.

Dittmann, K.K., Chaul, L.T., Lee, S.H.I., Corassin, C.H., Fernandes de Oliveira, C.A.,Pereira De Martinis, E.C., Alves, V.F., Gram, L., Oxaran, V., 2017. S. aureus in some Brazilian dairy industries: changes of contamination and diversity. Front. Microbiol. 8, 2049.

Eshetu, E., 2015. An overview on the epidemiology and diagnosis of bovine mastitis. Adv. Life. Sci. Technol. 35, 23-27.

Emeru, B.A., Messele, Y.E., Tegegne, D.T., Yalew, S.T., Bora, S.K., Babura, M.D., Beyene, M.T., Werid, G.M., 2019. Characterization of antimicrobial resistance in staphylococcus aureus isolated from bovine mastitis in central ethiopia. J. Vet. Med.Anim. Health. 11(4), 81-87.

Etifu, M., Tilahun, M., 2019. Prevalence of bovine mastitis, risk factors, isolation and antibio gram of major pathogens in Mid Rift valley, Ethiopia. Int. J. Liv. Prod. 10(1),14-23.

Figueiredo, A.M.S., Ferreira, F.A., Beltrame, C.O., Côrtes, M.F., 2017. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in S. aureus. Crit. Rev. Microbiol. 43(5), 602-620.

Gebremedhin, E.Z., Ararso, A.B., Borana, B.M., Kelbesa, K.A., Tadese, N.D., Marami,L.M., Sarba, E.J., 2022. Isolation and identification of staphylococcus aureus from milk and milk products, associated factors for contamination, and their antibiogram in Holeta, Central Ethiopia. Vet. Med. Int. 2022, 6544705.

Girmay, W., Gugsa, G., Taddele, H., Tsegaye, Y., Awol, N., Ahmed, M., Feleke, A., 2020.Isolation and identification of Methicillin-Resistant Staphylococcus Aureus (MRSA) from milk in shire dairy farms, Tigray, Ethiopia. Vet. Med. Int. 2020, 8833973.

Gomes, F., Saavedra, M.J., Henriques, M., 2016. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial biofilms. Pathog. Dis. 74(3), ftw006.

Grima, L.Y.W., Leliso, S.A., Bulto, A.O., Ashenafi, D., 2021. Isolation, identification, and antimicrobial susceptibility profiles of Staphylococcus aureus from clinical mastitis in Sebeta town dairy farms. Vet. Med. Int. 2021, 1772658.

Gulzar, M., Zehra, A., 2018. Staphylococcus aureus: a brief review. Int. J. Vet. Sci. Res. 4(1),020-022.

Haaber, J., Penades, J.R., Ingmer, H., 2017. Transfer of Antibiotic Resistance in S. aureus. Trends. Microbiol. 25(11), 893-905.

Hika, W.A., Biruk, T.M., Ashenafi, S.B., Mekonnen, S.B., 2017. Isolation and identification of methicillin-resistant Staphlococcus aureus from mastitic dairy cows in Bishoftu town, Ethiopia. Afr. J. Microbiol. Res. 11, 1606-1613.

Hogeveen, H., Van, M.D.V., 2017.Assessing the economic impact of an endemic disease: the case of mastitis. Rev. Sci. Tech. 36, 217–26.

Hossain, M.K., Paul, S., Hossain, M.M., 2017. Bovine mastitis and its therapeutic strategy doing antibiotic sensitivity test. Austin. J. Vet. Sci. Anim. Husb. 4 (1), 1030.

Howlin, R.P., Brayford, M.J., Webb, J.S., 2015. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob. Agents. Chemother. 59(1), 111–120.

Ibrahim, R.A., Teshal, A.M., Dinku, S.F., Abera, N.A., Negeri, A.A., Desta, F.G., Keficho,W.M., 2018. Antimicrobial resistance surveillance in Ethiopia: Implementation experiences and lessons learned. Afr. J. Lab. Med. 7(2), 770.

Imanishi, I., Nicolas, A., Caetano, A.C.B., de Castro, T.L.P., Tartaglia, N.R., Mariutti, R.,Guédon, E., Even, S., Berkova, N., Arni, R.K., 2019. Exfoliative toxin E, a new S.aureus virulence factor with host-specific activity. Sci. Rep. 9, 16336.

Jahan, M., Rahman, M., Parvej, M.S., Chowdhury, S.M.Z.H., Haque, E., Talukder, M.A.K.,Ahmed, S., 2015. Isolation and characterization of Staphylococcus aureus from raw cow milk in Bangladesh. J. Adv. Vet. Anim. Res. 2(1), 49-55

Kalayu, A.A., Woldetsadik, D.A., Woldeamanuel, Y., Wang, S.H., Gebreyes, W.A., Teferi, T.,2020. Burden and antimicrobial resistance of S. aureus in dairy farms in Mekelle, Northern Ethiopia. BMC. Vet. Res. 16(1), 20.

Kavitha, V., Archana, P., 2015. Quality assessment of different milk brands available in Kottayam District, Kerala. Int. J. Adv. Nutr. Health. Sci. 3(1), 137-142.

Kemal, K.E., Tesfaye, S., Ashanafi, S., Muhammadhussien, A.F., 2017. Prevalence, risk factors and multidrug resistance profile of S. aureus isolated from bovine mastitis in selected dairy farms in and around Asella town, Arsi Zone, South Eastern Ethiopia. Afr. J. Microbiol. Res. 11(45), 1632-1642.

Kong, C., Neoh, H.M., Nathan, S., 2016. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins (Basel). 8(3), 72.

Lalita, S., Verma, A., Amit, K., Anu, R., Rajesh, N., 2015. Incidence and pattern of antibiotic resistance of staphylococcus aureus isolated from clinical and subclinical mastitis in cattle and buffaloes. Asian. J. Anim. Sci. 9(3), 100-109.

Lemma, F., Alemayehu, H., Stringer, A., Eguale, T., 2021. Prevalence and antimicrobial susceptibility profile of staphylococcus aureus in milk and traditionally processed dairy products in addis ababa, ethiopia. Biomed. Res. Int. 2021, 5576873.

Levison, L., Miller-Cushon, E., Tucker, A., Bergeron, R., Leslie, K., Barkema, H., 2016. Incidence rate of pathogen-specific clinical mastitis on conventional and organic Canadian dairy farms. J. Dairy. Sci. 99, 1341–1350,

Marama, A., Mamu, G., Birhanu, T., 2016. Prevalence and antibiotic resistance of S. aureus Mastitis in Holetta Area, Western Ethiopia. Glob. Vet. 16(4), 365-370.

Marcondes, M., Chagas, J., Magalhães, N., Molinero, A., 2022. Milk losses due to mastitis in Holstein dairy cows: a modeling approach. Anim. Sci. Proc. 13, 556-557.

Markey, B., Leonard, F., Archambault, M., Cullinane, A. Maguire, D. 2013. Clinical veterinary microbiology, 2nd edition. Elsevier Health Sciences, London.

Merwan, A., Nezif, A., Metekia, T., 2018. Review on milk and milk product safety, quality assurance and control. Int. J. Livest. Prod. 9(4), 67-78.

Mekonnen, S.A., Lam, T., Hoekstra, J., Rutten, V., Tessema, T.S., Broens, E.M., Riesebos, A.E., Spaninks, M.P., Koop, G., 2018. Characterization of staphylococcus aureus isolated from milk samples of dairy cows in small holder farms of north-western ethiopia. BMC Vet Res. 14(1), 246.

Molineri, A.I., Camussone, C., Zbrun, M.V., Suarez Archilla, G., Cristiani, M., Neder, V., Signorini, M., 2021. Antimicrobial resistance of S. aureus isolated from bovine mastitis: Systematic review and meta-analysis. Prev. Vet. Med. 188, 105261.

Muhie, O.A., 2019. Antibiotic use and resistance pattern in Ethiopia: Systematic review and meta-analysis. Int. J. Microbiol. 2019, 2489063.

Pal, M., Kerorsa, G.B., Marami, L.M., Kandi, V., 2020. Epidemiology, pathogenicity, animal infections, antibiotic resistance, public health significance, and economic impact of staphylococcus aureus: a comprehensive review. Am. J. Public. Health.8(1), 14-21.

Pérez, V.K.C., Costa, G.M.D., Guimarães, A.S., Heinemann, M.B., Lage, A.P., Dorneles,E.M.S., 2020. Relationship between virulence factors and antimicrobial resistance in staphylococcus aureus from bovine mastitis. J. Glob. Antimicrob. Resist. 22, 792-802.

Pietrocola, G., Nobile, G., Rindi, S., Speziale, P., 2017. Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front. Cell. Infect.Microbiol. 7, 166.

Planet, P.J., Narechania, A., Chen, L., Mathema, B., Boundy, S., Archer, G., Kreiswirth, B.,2017. Architecture of a species: phylogenomics of Staphylococcus aureus. Trends.Microbiol. 25(2), 153-166.

Radostits, O.M., Gay, C., Hinchcliff, K.W., Constable, P.D., 2007. A textbook of the diseases of cattle, horses, sheep, pigs and goats. Vet. Med. 10, 2045-2050.

Rainard, P., Foucras, G., Fitzgerald, J.R., Watts, J.L., Koop, G., Middleton, J.R., 2018. Knowledge gaps and research priorities in S. aureus mastitis control. Transbound.Emerg. Dis. 65, 149–165.

Reddy, P.N., Srirama, K., Dirisala, V.R., 2017. An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infect. Dis. Res. Treat. 10,117991611770399

Reddy, P.N., Srirama, K., Dirisala, V.R., 2017. An update on clinical burden, diagnostic tools, and therapeutic options of staphylococcus aureus. Infect Dis (Auckl). 10, 28579798.

Regasa, S., Mengistu, S., Abraha, A., 2019. Milk safety assessment, isolation, and antimicrobial susceptibility profile of staphylococcus aureus in selected dairy farms of Mukaturi and Sululta Town, Oromia Region, Ethiopia. Vet. Med. Int. 2019,

Ruegg, P.L., 2017. A 100-Year review: mastitis detection, management, and prevention. J. dairy. Sci. 100(12), 10381-10397.

Seyoum, B., Kefyalew, H., Mukatr, Y., 2017. Prevalence, associated risk factors and antimicrobial susceptibility of Staphylococcus aureus isolated from bovine mastitic milk in and around Asella town, Ethiopia. Adv. Biores. 11(5), 295-301.

Sharma, N., Maiti, S., Sharma, K.K., 2007. Prevalence, etiology and antibiogram of microorganisms associated with sub-clinical mastitis in buffaloes in durg, chhattisgarh state (India). Int. J. Dairy. Sci. 2(2), 145-151.

Sharun, K., Dhama, K., Tiwari, R., Gugjoo, M.B., Iqbal Yatoo, M., Patel, S.K., Pathak,M., Karthik, K., Khurana, S.K., Singh, R., Puvvala, B., Amarpal, Singh, R., Singh,K.P., Chaicumpa, W., 2021. Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review. Vet. Q. 41(1), 107-136.

Sheykhsaran, E., Baghi, H.B., Soroush, M.H., Ghotaslou, R., 2019. An overview of tetracyclines and related resistance mechanisms. Rev. Med. Microbiol. 30(1), 69-75.

Tesfaye, B., Matios, L., Getachew, T., Tafesse, K., Abebe, O., Letebrihan, Y., Mekdes, T.,Tilaye, D., 2019. Study on bovine mastitis with isolation of bacterial and fungal causal agents and assessing antimicrobial resistance patterns of isolated Staphylococcus species in and around Sebeta town, Ethiopia. Afr. j. microbiol. Res.13(1), 23-32.

Tassew, A., Aki, A., Legesse, K., 2017. Isolation, identification and antimicrobial resistance profile of staphylococcus aureus and occurrence of methicillin resistant s. Aureus isolated from mastitic lactating cows in and around Assosa Town, Benishangul Gumuz Region, Ethiopia. J. Dairy Vet. Anim. Res. 6, 180.

Tesfaye, K., Gizaw, Z., Haile, A.F., 2021. Prevalence of mastitis and phenotypic characterization of methicillin-resistant staphylococcus aureus in lactating dairy cows of selected dairy farms in and around Adama town, Central Ethiopia. Environ.Health. Insights. 15, 34103935.

Thomer, L., Schneewind, O., Missiakas, D., 2016. Pathogenesis of Staphylococcus aureus. bloodstream infections. Annu. Rev. Pathol. 11, 343.

Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., Fowler, V.G., Jr., 2015. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28(3), 603-661.

Tora, E.T., Bekele, N.B., Suresh Kumar, R.S., 2022. Bacterial profile of bovine mastitis in Ethiopia: a systematic review and meta-analysis. PeerJ. 10, e13253.

Walsh, C., Wencewicz, T., 2016. Antibiotics: Challenges, mechanisms, opportunities. John Wiley & Sons, Washington.

Wang, X., Liu, Q., Zhang, H., Li, X., Huang, W., Fu, Q., Li, M., 2018. Molecular characteristics of community-associated staphylococcus aureus isolates from pediatric patients with bloodstream infections between 2012 and 2017 in Shanghai, China. Front. Microbiol. 9, 1211.

Wu, S., Duan, N., Gu, H., Hao, L., Ye, H., Gong, W., Wang, Z., 2016. A review of the methods for detection of Staphylococcus aureus enterotoxins. Toxins (Basel). 8(7),176.

Xing, X., Zhang, Y., Wu, Q., Wang, X., Ge, W., Wu, C., 2016. Prevalence and characterization of Staphylococcus aureus isolated from goat milk powder processing plants. Food. Control. 59, 644-650.

Yılmaz, E., Aslantaş, Ö., 2017. Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian. Pac. J. Trop. Med. 10(11), 1059-1064.

Yimana, M., Tesfaye, J., 2022. Isolation, identification and antimicrobial profile of methicillin‐resistant S. aureus from bovine mastitis in and around Adama, Central Ethiopia. Vet. Med. Sci. 8(6), 2576-2584.

Zaatout, N., Ayachi, A., Kecha, M., 2020. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. J. App.Microbiol. 129(5), 1102-1119.