Draft genome sequence of multidrug resistant Proteus mirabilis strain MAD23 https://doi.org/10.12982/VIS.2024.008
Main Article Content
Abstract
Genome sequencing became one of the important tools for diagnosis of microorganisms. Proteus mirabilis is an enteric Gramnegative bacterium causes gastrointestinal and urinary tract infections in human and animals. Here, the draft sequencing of Proteus mirabilis (MAD23) strain was performed. The strain was collected from Chinese duck cecum suffering from diarrhea. Bacteria was identified by biochemical tests and characteristic swarming pattern on the plate. Antimicrobial
susceptibility test was performed by VITEC-2 MS system. Also, draft genome sequencing was conducted using the Illumina
platform NovaSeq sequencer. The genome is about 3,729,695 bp long, GC content is of 38.9%., number of contigs is 123,
largest contig is 137547pb, smallest contig is 513, total of protein-coding sequences (CDSs) is 3410, and number of RNA
genes is 72. Genome Pairwise comparisons of Proteus mirabilis MAD23 with other vs. type strain was detected based on is
DDH, GC content, δ- value, genome size and number of proteins. Neighbour-Joining phylogenetic trees show relationship
between Proteus mirabilis MAD23 and the close strains of Proteus species based on 16S rRNA sequences. In addition,
analysis of the sequence reveals presence of many antibiotic resistance genes as dfrA1, sul2, dfrA32, aadA2b, aph(3’)-Ia,
aadA1, aph(6)-Id, aph(3’’)-Ib, ere(A), aadA1, aadA2b, tet(J), tet(C), floR, and Cat genes.These genes encoding the resistance
to different antibiotics including Aminoglycosides, Macrolides, Aminocyclitol, Tetracycline and Amphenicol. This work is
considered as an important study can help in more understanding of WGS in Proteus spp. and recognize the genes that related to antibiotic resistance in this pathogen.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Abreu, A.G., Marques, S.G., Monteiro-Neto, V., Carvalho, R.M., Gonçalves, A.G., 2011.Nosocomial infection and characterization of extended-spectrum β-lactamasesproducing Enterobacteriaceae in Northeast Brazil. Rev. Soc. Bras. Med. Trop.44(4), 441-446.
Adeolu, M., Alnajar, S., Naushad, S., S Gupta, R., 2016. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae
fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov.,and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 66(12), 5575-5599.
Adsanychan, N., Hoisang, S., Seesupa, S., Kampa, N., Kunkitti, P., Jitpean, S., 2019.Bacterial isolates and antimicrobial susceptibility in dogs with urinary tract infection in Thailand: A retrospective study between 2013–2017. Vet. Integr. Sci.
(1), 21-31.
Alikhan, N.F., Petty, N.K., Ben Zakour, N.L., Beatson, S.A., 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC. Genet. 12(1), 1-10.
Al-Saadi, N., Alsallami, D., Alsultan, A., Al-hriahaw, H., 2022. Whole- genomic sequence of multidrug resistance burkholderia cepacia associated with acute suppurative thyroiditis. J. Complement. Med. Res. 13(2), 50-52.
Alsultan, A., Alsallami, D., 2022. Efflux-mediated bile resistance in gram-positive pathogens. J. Pure Appl. Microbiol. 16(1), 10-18.
Alsultan, A., Walton, G., Andrews, S.C., Clarke, S.R., 2023. Staphylococcus aureus FadB is a dehydrogenase that mediates cholate resistance and survival under human colonic conditions. Microbiology (Reading). 169(3), 001314.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215(3), 403-410.
Armbruster, C.E., Mobley, H.L., Pearson, M.M., 2018. Pathogenesis of Proteus mirabilis infection. EcoSal. Plus. 8(1), 1-73.
Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K.,Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman,A.L., Overbeek, R.A., McNeil, L.K., Paarmann, D., Paczian, T., Parrello, B., Pusch,G.D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A., Zagnitko, O.,2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 9(75), 1-5.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin,V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V.,Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455-477.
Burall, L.S., Harro, J.M., Li, X., Lockatell, C.V., Himpsl, S.D., Hebel, J.R., Johnson, D.E.,Mobley, H.L., 2004. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: Identification of 25 signature-tagged mutants attenuated at
least 100-fold. Infect. Immun. 72(5), 2922-2938.
Chen, Y.P., Lei, C.W., Kong, L.H., Zeng, J.X., Zhang, X.Z., Liu, B.H., Li, Y., Xiang,R., Wang, Y.X., Chen, D.Y., Zhang, A.Y., Wang, H.N., 2018. Tn6450, a novel multidrug resistance transposon characterized in a proteus mirabilis isolate from chicken in China. Antimicrob. Agents. Chemother. 62(4), e02192-17.
Cohen-Nahum, K., Saidel-Odes, L., Riesenberg, K., Schlaeffer, F., Borer, A., 2010. Urinary tract infections caused by multi-drug resistant Proteus mirabilis: risk factors and clinical outcomes. Infection. 38(1), 41-46.
D'Andrea, M.M., Literacka, E., Zioga, A., Giani, T., Baraniak, A., Fiett, J., Sadowy, E., Tassios, P.T., Rossolini, G.M., Gniadkowski, M., Miriagou, V., 2011. Evolution and spread of a multidrug-resistant Proteus mirabilis clone with chromosomal AmpC-type cephalosporinases in Europe. Antimicrob. Agents. Chemother. 55(6),2735-2742.
Dong, D., Li, M., Liu, Z., Feng, J., Jia, N., Zhao, H., Zhao, B., Zhou, T., Zhang, X., Tong, Y. and Zhu, Y., 2019. Characterization of a NDM-1-encoding plasmid pHFK418-NDM from a clinical Proteus mirabilis isolate harboring two novel transposons,Tn6624 and Tn6625. Front. Microbiol. 10, 2030.
Drzewiecka, D., 2016. Significance and roles of Proteus spp. Bacteria in natural environments. Microb. Ecol. 72(4), 741-758.
Eriksson, S., Zbornik, J., Dahnsjö, H., Erlanson, P., Kahlmeter, O., Fritz, H., Bauer, C.A.,1986. The combination of pivampicillin and pivmecillinam versus pivampicillin alone in the treatment of acute pyelonephritis. Scand. J. Infect. Dis. 18(5), 431-438.
Girlich, D., Bonnin, R.A., Dortet, L., Naas, T., 2020. Genetics of acquired antibiotic resistance genes in Proteus spp. Front. Microbiol. 11, 256.
Griffith, D.P., Musher, D.M., Itin, C., 1976. Urease. The primary cause of infection-induced urinary stones. Invest. Urol. 13(5), 346-350.
Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G., 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 29(8), 1072-1075.
Hasman, H., Saputra, D., Sicheritz-Ponten, T., Lund, O., Svendsen, C.A., Frimodt-Møller, N., Aarestrup, F.M., 2014. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J. Clin.Microbiol. 52(1), 139-146.
He, J., Sun, L., Zhang, L., Leptihn, S., Yu, Y., Hua, X., 2021. A novel SXT/R391 integrative and conjugative element carries two copies of the bla NDM-1 gene in Proteus mirabilis. Msphere. 6(4), e00588-21.
Hirabayashi, A., Yahara, K., Mitsuhashi, S., Nakagawa, S., Imanishi, T., Ha, V.T.T., Nguyen,A.V., Nguyen, S.T., Shibayama, K., Suzuki, M., 2021. Plasmid analysis of NDM metallo-β-lactamase-producing Enterobacterales isolated in Vietnam. PLoS. One.
(7), e0231119.
Jacobsen, S.M., Stickler, D.J., Mobley, H.L., Shirtliff, M.E., 2008. Complicated catheterassociated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21, 26–59.
Jacobsen, S., Shirtliff, M., 2011. Proteus mirabilis biofilms and catheter- associated urinary infections. Virulence. 2, 460–465.
Jansen, A.M., Lockatell, V., Johnson, D.E., Mobley, H.L., 2004. Mannose-resistant Proteuslike fimbriae are produced by most proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm
formation. Infect. Immun. 72(12), 7294-7305.
Jones, B.D., Mobley, H.L., 1988. Proteus mirabilis urease: genetic organization, regulation, and expression of structural genes. J. Bacteriol. 170, 3342–3349.
Jones, B.V., Mahenthiralingam, E., Sabbuba, N.A., Stickler, D.J., 2005. Role of swarming in the formation of crystalline proteus mirabilis biofilms on urinary catheters. J.Med. Microbiol. 54(9), 807-813.
Kanzari, L., Ferjani, S., Saidani, M., Hamzaoui, Z., Jendoubi, A., Harbaoui, S., Ferjani, A.,Rehaiem, A., Boubaker, I.B.B., Slim, A., 2018. First report of extensively-drugresistant Proteus mirabilis isolate carrying plasmid-mediated blaNDM-1 in a Tunisian intensive care unit. Int. J. Antimicrob. Agents. 52(6), 906-909.
Kreunumkum, P., Markmee, P., Sripratak, T., Kumoun, I., Boonsri, B., 2016. Bacterial isolates from wounds and antimicrobial resistance in dogs and cats from a pet hospital in Chiang Mai. Vet. Integr. Sci. 14(2), 73-84.
Lefort, V., Desper, R., Gascuel, O., 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32(10), 2798-2800.
Leulmi, Z., Kandouli, C., Mihoubi, I., Benlabed, K., Lezzar, A., Rolain, J.M., 2019. First report of blaOXA-24 carbapenemase gene, armA methyltransferase and aac (6′)-Ib-cr among multidrug-resistant clinical isolates of Proteus mirabilis in Algeria. J. Glob. Antimicrob. Resist. 16, 125-129.
Li, Z., Peng, C., Zhang, G., Shen, Y., Zhang, Y., Liu, C., Liu, M., Wang, F., 2022. Prevalence and characteristics of multidrug-resistant proteus mirabilis from broiler farms in Shandong Province, China. Poult. Sci. 101(4), 101710.
Liu, M., Li, D., Jia, W., Ma, J., Zhao, X., 2023. Study of the molecular characteristics and homology of carbapenem-resistant Proteus mirabilis by whole genome sequencing. J. Med. Microbiol. 72(1), 001648.
Luzzaro, F., Brigante, G., D’Andrea, M.M., Pini, B., Giani, T., Mantengoli, E., Rossolini,G.M., Toniolo, A., 2009. Spread of multidrug-resistant Proteus mirabilis isolates producing an AmpC-type β-lactamase: epidemiology and clinical management. Int. J. Antimicrob. Agents. 33(4), 328-333.
Mathur, S., Sabbuba, N.A., Suller, M.T., Stickler, D.J., Feneley, R.C., 2005. Genotyping of urinary and fecal Proteus mirabilis isolates from individuals with long-term urinary catheters. Eur. J. Clin. Microbiol. Infect. Dis. 24, 643–644.
Meier-Kolthoff, J.P., Göker, M., 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10(1), 2182.
Meier-Kolthoff, J.P., Carbasse, J.S., Peinado-Olarte, R.L., Göker, M., 2022. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic. Acids. Res. 50(D1), D801-D807.
Mobley, H.L., Belas, R., 1995. Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends. Microbiol. 3(7), 280-284.
O'Hara, C.M., Brenner, F.W., Miller, J.M., 2000. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 13(4),534-546.
Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Stevens, R., 2014.The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic. Acids. Res. 42(D1), D206-D214.
Pearson, M.M., Sebaihia, M., Churcher, C., Quail, M.A., Seshasayee, A.S., Luscombe, N.M., Mobley, H.L., 2008. Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J. Bacteriol. 190(11), 4027-4037.
Qin, S., Qi, H., Zhang, Q., Zhao, D., Liu, Z.Z., Tian, H., Xu, L., Xu, H., Zhou, M., Feng,X., Liu, H.M., 2015. Emergence of extensively drug-resistant Proteus mirabilis harboring a conjugative NDM-1 plasmid and a novel Salmonella genomic island 1 variant, SGI1-Z. Antimicrob. Agents. Chemother. 59(10), 6601-6604.
Ramos, A.C., Cayô, R., Carvalhaes, C.G., Jové, T., da Silva, G.P., Sancho, F.M.P., Chagas-Neto, T., Medeiros, E.A.S., Gales, A.C., 2018. Dissemination of multidrug-resistant Proteus mirabilis clones carrying a novel integron-borne bla IMP-1 in a tertiary
hospital. Antimicrob. Agents. Chemother. 62(2), e01321-17.
Rashid, T., Ebringer, A., 2007. Rheumatoid arthritis is linked to Proteus--the evidence. Clin.Rheumatol. 26(7), 1036-1043.
Rubic, Z., Soprek, S., Jelic, M., Novak, A., Goic-Barisic, I., Radic, M., Tambic-Andrasevic,A., Tonkic, M., 2021. Molecular characterization of β-lactam resistance and antimicrobial susceptibility to possible therapeutic options of AmpC-producing
multidrug-resistant Proteus mirabilis in a University Hospital of Split, Croatia.Microb. Drug. Resist. 27(2), 162-169.
Rubin, R.H., Tolkoff-Rubin, N.E., Cotran, R.S., 1986. Urinary tract infection,pyelonephritis, and reflux nephropathy. Kidney. 5, 1597-1654.
Shelenkov, A., Petrova, L., Fomina, V., Zamyatin, M., Mikhaylova, Y., Akimkin, V., 2020.Multidrug-resistant Proteus mirabilis strain with cointegrate plasmid.Microorganisms. 8(11), 1775.
Somrup, L., Akatvipat, A., Pichpol, D., Nalampang, K., 2018. Multi-drug resistance of aerobic bacteria from open fractures in dogs and cats. Vet. Integr. Sci. 16(3), 173-182.
Stock, I., 2003. Natural antibiotic susceptibility of Proteus spp., with special reference to P.mirabilis and P. penneri strains. J. Chemother. 15(1), 12-26.
Stothard, P., Grant, J.R., Van Domselaar, G., 2019. Visualizing and comparing circular genomes using the CGView family of tools. Brief. Bioinformatics. 20(4), 1576-1582.
Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38(7), 3022-3027.
Trung, N.B., Dung, T.T., 2023. Antimicrobial resistance and the prevalence of integron in Aeromonas hydrophila from haemorrhagic diseased Pangasius catfish of the Mekong Delta. Vet. Integr. Sci. 21(2), 333-347.
Tseng, B.S., Zhang, W., Harrison, J.J., Quach, T.P., Song, J.L., Penterman, J., Singh,P.K., Chopp, D.L., Packman, A.I., Parsek, M.R., 2013. The extracellular matrix protects pseudomonas aeruginosa biofilms by limiting the penetration oftobramycin. Environ. Microbiol. 15(10), 2865-2878.
Wasfi, R., Hamed, S.M., Amer, M.A., Fahmy, L.I. ,2020. Proteus mirabilis biofilm: development and therapeutic strategies. Front. cell. infect. 10, 414.
Yang, J., Shan, G., Yu, G., Wei, J., Zhang, Q., Su, W., Liu, S., 2023. Whole genome sequencing of multidrug-resistant Proteus mirabilis strain PM1162 recovered from a urinary tract infection in China. J. Glob. Antimicrob. Resist. 33, 44-50.
Zankari, E., Allesøe, R., Joensen, K.G., Cavaco, L.M., Lund, O., Aarestrup, F.M., 2017.PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J.Antimicrob. Chemother. 72(10), 2764-2768.