Phylogenetic analysis of zoonotic Acinetobacter spp. isolated from Geoffroy's bat (Myotis emarginatus), Northern Iraq https://doi.org/10.12982/VIS.2023.060
Main Article Content
Abstract
The current study was conducted to isolate and evaluate the phylogenetic status of the zoonotic Acinetobacter spp. from the Geoffroy's bat (Myotis emarginatus). The sample collection included 35 bats captured in some caves in Northern Iraq. Intestine parts and swabs were taken from each bat. The specimens were subjected to bacterial cultivation processes and 16S rRNA gene and beta lactamase (bla TEM-1) dependent polymerase chain reaction (PCR) methods to detect the genus level and the virulence activity, respectively. The phylogenetic tree was built utilizing the 16S rRNA gene. The findings of the bacterial cultivation revealed the presence of the bacterium in 23 (65.7%) of the collected bats; however, the 16S rRNA-PCR showed that only 10 (28.57%) of the bats demonstrated the incidence of this microorganism in their intestines. The bla TEM-1-PCR reported that 4 (40%) isolates of the 16S rRNA-PCR positive bats carried the β-lactamase gene in their genetic materials. The phylogenetic tree showed that the genetic similarity of the current study isolates was closely related to those from Egypt and China. The present data show that Acinetobacter spp. is present in the intestine of the Geoffroy's bat (Myotis emarginatus) located in some caves from Northern Iraq, and some isolates have virulence potential represented by the composition of the beta lactamase gene.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Al Atrouni, A., Joly-Guillou, M.L., Hamze, M., Kempf, M., 2016. Reservoirs of non-baumannii acinetobacter species. Front. Microbiol. 7(2), 49-60.
Avena, C.V., Parfrey, L.W., Leff, J.W., Archer, H.M., Frick, W.F., Langwig, K.E., Kilpatrick, A.M., Powers, K.E., Foster, J.T., McKenzie, V.J., 2016. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front. Microbiol. 7(11),1753-1767.
Bengtsson-Palme, J., Kristiansson, E., Larsson, D.G.J., 2018. Environmental factors influencing the development and spread of antibiotic resistance. FEMS. Microbiol.Rev. 42(1), 68–80.
Chiu, C.H., Lee, Y.T., Wang, Y.C., Yin, T., Kuo, S.C., Yang, Y.S., Chen, T.L., Lin, J.C., Wang, F.D., Fung, C.P., 2015. A retrospective study of the incidence, clinical characteristics, identification, and antimicrobial susceptibility of bacteremic isolates of acinetobacter ursingii. BMC Infect Dis. 15(1), 400–407.
Cho, Y.J., Moon, D.C., Jin, J.S., Choi, C.H., Lee, Y.C., Lee, J.C., 2009. Genetic basis of resistance to aminoglycosides in Acinetobacter spp. and spread of armA in Acinetobacter baumannii sequence group 1 in Korean hospitals. Diagn. Microbiol.Infect. Dis. 64(2), 185–190.
Endo, S., Sasano, M., Yano, H., Inomata, S., Ishibashi, N., Aoyagi, T., Hatta, M., Gu, Y., Yamada, M., Tokuda, K., Kitagawa, M., Kunishima, H., Hirakata, Y., Kaku, M., 2012. IMP-1-producing carbapenem-resistant Acinetobacter ursingii from Japan. J. Antimicrob. Chemother. 67(10), 2533–2534.
Fernando, D.M., Khan, I.U.H., Patidar, R., Lapen, D.R., Talbot, G., Topp, E., Kumar, A., 2016. Isolation and characterization of Acinetobacter baumannii recovered from campylobacter selective medium. Front. Microbiol. 7(1871), 1-9.
Griffith, M.E., Ceremuga, J.M., Ellis, M.W., Guymon, C.H., Hospenthal, D.R., Murray, C.K., 2006. Acinetobacter skin colonization of US Army Soldiers. Infect. Control Hosp. Epidemiol. 27(7), 659–661.
Jeon, J.H., Lee, J.H., Lee, J.J., Park, K.S., Karim, A.M., Lee, C.R., Jeong, B.C., Lee, S.H., 2015. Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int. J. Mol. Sci. 16(5), 9654–9692.
Khalilzadegan, S., Sade, M., Godarzi, H., Eslami, G., Hallajzade, M., Fallah, F., Yadegarnia, D., 2016. Beta-lactamase encoded genes blaTEM and blaCTX among Acinetobacter baumannii species isolated from medical devices of intensive care units in Tehran hospitals. Jundishapur J. Microbiol. 9(5), e14990- e14996.
Khosravi, A.D., Sadeghi, P., Shahraki, A.H., Heidarieh, P., Sheikhi, N., 2015. Molecular methods for identification of acinetobacter species by partial sequencing of the rpoB and 16S rRNA genes. J. Clin. Diagn. Res., 9(7), DC09–DC13.
Poirel, L., Menuteau, O., Agoli, N., Cattoen, C., Nordmann, P., 2003. Outbreak of extendedspectrum β-Lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French Hospital. J. Clin. Microbiol. 41(8), 3542–3547.
Salzer, H.J.F., Rolling, T., Schmiede, S., Klupp, E.M., Lange, C., Seifert, H., 2016. Severe community-acquired bloodstream infection with Acinetobacter ursingii in person who injects drugs. Emerg. Infect. Dis. 22(1), 134–137.
Sievert, D.M., Ricks, P., Edwards, J.R., Schneider, A., Patel, J., Srinivasan, A., Kallen, A., Limbago, B., Fridkin, S., 2013. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National
Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect. Control Hosp. Epidemiol. 34(1), 1–14.
Thuan, N.K., Lam, N.T., Chien, N.T.P., Khanh, N.P., Khai, L.T.L., Bich, T.N., 2022. Prevalence of antibiotic resistance genes and genetic relationship of Escherichia coli serotype O45, O113, O121, and O157 isolated from cattle in the Mekong Delta,
Vietnam. Vet. Integr. Sci. 20(3), 695-707.
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A.,Osek, J., 2022. Antibiotic resistance in bacteria—a review. Antibiotics. 11(8), 1079-1,119.
Vázquez-López, R., Solano-Gálvez, S.G., Juárez Vignon-Whaley, J.J., Abello Vaamonde,J.A., Padró Alonzo, L.A., Rivera Reséndiz, A., Muleiro Álvarez, M., Vega López, E.N., Franyuti-Kelly, G., Álvarez-Hernández, D.A., Moncaleano Guzmán, V.,Juárez Bañuelos, J.E., Marcos Felix, J., González Barrios, J.A., Barrientos Fortes, T.,2020. Acinetobacter baumannii resistance: a real challenge for clinicians. Antibiotics (Basel). 9(4), 9(4), 205–226.
Vengust, M., Knapic, T., Weese, J.S., 2018. The fecal bacterial microbiota of bats; Slovenia.PLoS ONE. 13(5), e0196728.
Visca, P., Seifert, H., Towner, K.J., 2011. Acinetobacter infection--an emerging threat to human health. IUBMB Life. 63(12), 1048–1054.
Wong, D., Nielsen, T.B., Bonomo, R.A., Pantapalangkoor, P., Luna, B., Spellberg, B., 2017.Clinical and pathophysiological overview of acinetobacter infections: a century of challenges. Clin. Microbiol. Rev. 30(1), 409–447.
Wongsrichai, S., Phuektes, P., Jittimanee, S., 2021. Multidrug-resistance and mobile colistin resistance (mcr) genes of Salmonella isolates from pork in Thailand during 2014-2017: comparison between two different types of slaughterhouses and retails. Vet.Integr. Sci. 19(3), 333–348.