Extended-spectrum beta-lactamase (ESBL) production and virulence genes profile of avian pathogenic Escherichia coli (APEC) isolated from broiler chickens in eastern Thailand https://doi.org/10.12982/VIS.2024.016

Main Article Content

Suttitas Tongkamsai
Kulchai Nakbubpa

Abstract

Avian pathogenic Escherichia coli (APEC) causes colibacillosis, resulting in extensive economic losses for the broiler industry. To date, there is little information in Thailand about virulence-associated genes and antibiotic resistance of APEC strains. Here, this study aimed to investigate the virulence genes and extended-spectrum beta-lactamase (ESBL) characteristics of APEC isolated from broilers. This study used multiplex polymerase chain reaction (PCR) to determine the presence of virulence genes and resistance genes in APEC. Furthermore, the disc diffusion method examined ESBL phenotypes of APEC and antibiotic resistance profiles against 17 antimicrobials. In this study, E. coli was isolated 11 (6.32%) of 174 broiler visceral organs. All E. coli isolates were tested for five APEC-virulence-associated genes (iroN, ompT, hlyF, iutA, and iss). Eight E. coli isolates from broilers with colibacillosis-associated lesions carried two (iroN and ompT) of the APEC virulence genes. One APEC virulence gene (hlyF) was found in E. coli isolates from broilers without lesions. Possibly no individual virulence gene was specific to the APEC strain. Interestingly, the papC, previously detected in humans with uropathogenic E. coli, was found in an APEC isolate. All APEC isolates were ESBL-producing E. coli, and then they were tested for four beta-lactamase-encoding genes (blaTEM, blaCTX-M, blaOXA, and blaSHV). The blaTEM and blaCTX-M were identified in 81.81% (9/11) of the isolates, whereas blaOXA or blaSHV were not detected in any isolate. All APEC showed multi-drug resistance (MDR) phenotypes, especially chloramphenicol, erythromycin, and sulfamethoxazole-trimethoprim. Although antibiotics were not recently used, MDR might be encouraged by horizontally transferring antibiotic-resistance genes. In addition, fluoroquinolone resistances were found in APEC isolates which could transfer resistance genes to humans via the food chain. This study indicates that APEC isolates contain several virulence and bla genes and should be surveillance to prevent the transmission of those genes to humans.

Article Details

How to Cite
Tongkamsai, S., & Nakbubpa, K. . (2023). Extended-spectrum beta-lactamase (ESBL) production and virulence genes profile of avian pathogenic Escherichia coli (APEC) isolated from broiler chickens in eastern Thailand: https://doi.org/10.12982/VIS.2024.016. Veterinary Integrative Sciences, 22(1), 207–218. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/263132
Section
Research Articles

References

Aberkane, C., Messai, A., Messai, C.R., Boussaada, T., 2023. Antimicrobial resistance pattern of avian pathogenic Escherichia coli with detection of extended-spectrum beta-lactamase-producing isolates in broilers in east Algeria. Vet. World. 16(3), 449-454.

Anago, E., Ayi-Fanou, L., Akpovi, C.D., Hounkpe, W.B., Agassounon-Djikpo Tchibozo,M., Bankole, H.S., Sanni, A., 2015. Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. Ann Clin. Microbiol. Antimicrob. 14, 1-6.

Athanasakopoulou, Z., Reinicke, M., Diezel, C., Sofia, M., Chatzopoulos, D.C., Braun,S.D., Reissig, A., Spyrou, V., Monecke, S., Ehricht, R., Tsilipounidaki, K.,Giannakopoulos, A., Petinaki, E., Billinis, C., 2021. Antimicrobial resistance genes in ESBL-producing Escherichia coli isolates from animals in Greece. Antibiotics (Basel). 10(4), 1-15.

Azam, M., Mohsin, M., Sajjad Ur, R., Saleemi, M.K., 2019. Virulence-associated genes and antimicrobial resistance among avian pathogenic Escherichia coli from colibacillosis affected broilers in Pakistan. Trop. Anim. Health. Prod. 51(5), 1259-1265.

Chansiripornchai, N., Mooljuntee, S., Boonkhum, P., 2011. Antimicrobial sensitivity of avian pathogenic Escherichia coli (APEC) isolated from chickens during 2007-2010. Thai. J. Vet. Med. 41(4), 519-522.

CLSI, 2023. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals in CLSI supplement VET01S. Clinical and Laboratory Standards Institute, Wayne, PA.

Davis, G.S., Waits, K., Nordstrom, L., Grande, H., Weaver, B., Papp, K., Horwinski, J.,Koch, B., Hungate, B.A., Liu, C.M., Price, L.B., 2018. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC,Microbiol. 18(1), 1-7.

Eltai, N.O., Yassine, H.M., El-Obeid, T., Al-Hadidi, S.H., Al Thani, A.A., Alali, W.Q., 2020.Prevalence of antibiotic-resistant Escherichia coli isolates from local and imported retail chicken carcasses. J. Food. Prot. 83(12), 2200-2208.

Ewers, C., Janssen, T., Kiessling, S., Philipp, H.C., Wieler, L.H., 2005. Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian. Dis. 49(2), 269-273.

Farooq, M., Smoglica, C., Ruffini, F., Soldati, L., Marsilio, F., Di Francesco, C.E., 2022.Antibiotic resistance genes occurrence in conventional and antibiotic-free poultry farming, Italy. Animals (Basel). 12(18), 1-10.

Geser, N., Stephan, R., Hachler, H., 2012. Occurrence and characteristics of extendedspectrum b-lactamase (ESBL)producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC. Vet. Res. 8(21), 1-9.

Hanson, R., Kaneene, J.B., Padungtod, P., Hirokawa, K., Zeno, C., 2002. Prevalence of Salmonella and E. coli, and their resistance to antimicrobial agents, in farming communities in northern Thailand. Southeast. Asian. J. Trop. Med. Public. Health.33(Suppl 3), 120-126.

Hiroi, M., Yamazaki, F., Harada, T., Takahashi, N., Iida, N., Noda, Y., Yagi, M., Nishio,T., Kanda, T., Kawamori, F., Sugiyama, K., Masuda, T., Hara-Kudo, Y., Ohashi,N., 2012. Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in food-producing animals. J. Vet. Med. Sci. 74(2),189-195.

Hussein, A.H., Ghanem, I.A., Eid, A.A., Ali, M.A., Sherwood, J.S., Li, G., Nolan, L.K.,Logue, C.M., 2013. Molecular and phenotypic characterization of Escherichia coli isolated from broiler chicken flocks in Egypt. Avian. Dis. 57(3), 602-611.

Janben, T., Schwarz, C., Preikschat, P., Voss, M., Philipp, H.C., Wieler, L.H., 2001.Virulence-associated genes in avian pathogenic Escherichia coli (APEC) isolated from internal organs of poultry having died from colibacillosis. Int. J. Med. Microbiol. 291(5), 371-378.

Johnson, T.J., Wannemuehler, Y., Doetkott, C., Johnson, S.J., Rosenberger, S.C., Nolan, L.K., 2008. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J. Clin. Microbiol. 46(12), 3987-3996.

Joseph, J., Jennings, M., Barbieri, N., Zhang, L., Adhikari, P., Ramachandran, R., 2023. Characterization of avian pathogenic Escherichia coli isolated from broiler breeders with colibacillosis in Mississippi. Poultry. 2(1), 24-39.

Kamaruzzaman, E.A., Abdul Aziz, S., Bitrus, A.A., Zakaria, Z., Hassan, L., 2020. Occurrence and characteristics of extended-spectrum beta-lactamase-producing Escherichia coli from dairy cattle, milk, and farm environments in Peninsular Malaysia. Pathogens.9(12), 1-10.

Kim, Y.B., Yoon, M.Y., Ha, J.S., Seo, K.W., Noh, E.B., Son, S.H., Lee, Y.J., 2020.Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis. Poult. Sci. 99(2), 1088-1095.

Klimienė, I., Virgailis, M., Kerzienė, S., Šiugždinienė, R., Mockeliūnas, R., Ružauskas, M.,2017. Evaluation of genotypical antimicrobial resistance in ESBL producing Escherichia coli phylogenetic groups isolated from retail poultry meat. J. Food. Saf. 38(1), 1-7.

Lay, K.K., Torio, H.E., Bitrus, A.A., Mala, W., Sinwat, N., Chuanchuen, R. 2021. Multidrug resistant Escherichia coli harboring extended spectrum β-Lactamase-encoding genes isolated from clinically healthy pigs. Thai. J. Vet. Med. 51(2), 303-310.

Lee, S., Teng, L., DiLorenzo, N., Weppelmann, T.A., Jeong, K.C. 2019. Prevalence and molecular characteristics of extended-spectrum and AmpC beta-Lactamase producing Escherichia coli in grazing beef cattle. Front. Microbiol. 10, 1-19.

Li, S., Zhao, M., Li, Y., Zhang, L., Zhang, X., Miao, Z., 2012. Detection and source identification of airborne extended-spectrum beta-lactamase-producing Escherichia coli isolates in a chicken house. Aerobiologia. 29(2), 315-319.

Li, Y., Chen, L., Wu, X., Huo, S., 2015. Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. Poult. Sci.94(4), 601-611.

Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G.,Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D.L., Rice, L.B., Stelling, J., Struelens, M.J., Vatopoulos, A., Weber, J.T., Monnet,D.L., 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3), 268-281.

Nuangmek, A., Rojanasthien, S., Chotinun, S., Yamsakul, P., Tadee, P., Thamlikitkul, V.,Tansakul, N., Patchanee, P. 2018. Antimicrobial resistance in ESBL-Producing Escherichia coli isolated from layer and pig farms in Thailand. Acta Sci. Vet. 46(1538), 1-8.

Rahman, M.M., Husna, A., Elshabrawy, H.A., Alam, J., Runa, N.Y., Badruzzaman, A.T.M.,Banu, N.A., Al Mamun, M., Paul, B., Das, S., Rahman, M.M., Mahbub, E.E.A.T.M.,Khairalla, A.S., Ashour, H.M., 2020. Isolation and molecular characterization of multidrug-resistant Escherichia coli from chicken meat. Sci. Rep. 10(21999), 1-11.

Rakkhumkaew, N., Pengsuk, C., 2018. Chitosan and chitooligosaccharides from shrimp shell waste: characterization, antimicrobial and shelf life extension in bread. Food. Sci. Biotechnol. 27(4), 1201-1208.

Rezatofighi, S.E., Najafifar, A., Askari Badouei, M., Peighambari, S.M., Soltani, M., 2021. An integrated perspective on Virulence-Associated Genes (VAGs), Antimicrobial Resistance (AMR), and phylogenetic clusters of pathogenic and non-pathogenic avian Escherichia coli. Front. Vet. Sci. 8, 1-13.

Seo, K.W., 2023. Development of a method for the fast detection of extended-spectrum betalactamase-and plasmid-mediated AmpC beta-Lactamase-producing Escherichia coli and klebsiella pneumoniae from dogs and cats in the USA. Animals (Basel). 13(4), 1-12.

Skyberg, J.A., Horne, S.M., Giddings, C.W., Wooley, R.E., Gibbs, P.S., Nolan, L.K., 2003.Characterizing avian Escherichia coli isolates with multiplex polymerase chain reaction. Avian. Dis. 47(4), 1441-1447.

Sola-Gines, M., Cameron-Veas, K., Badiola, I., Dolz, R., Majo, N., Dahbi, G., Viso, S., Mora, A., Blanco, J., Piedra-Carrasco, N., Gonzalez-Lopez, J.J., Migura-Garcia, L.,2015. Diversity of multi-drug resistant Avian Pathogenic Escherichia coli (APEC)

causing outbreaks of colibacillosis in broilers during 2012 in Spain. PLoS. One.10(11), 1-14.

Srichumporn, W., Chaisowwong, W., Intanon, M., Na-Lampang, K., 2022. Extendedspectrum beta-lactamase-producing Escherichia coli from pork in Muang district, Chiang Mai Province, Thailand. Vet. World. 15(12), 2903-2909.

Subedi, M., Luitel, H., Devkota, B., Bhattarai, R.K., Phuyal, S., Panthi, P., Shrestha, A.,Chaudhary, D.K., 2018. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC. Vet. Res. 14(1), 1-6.

Thomrongsuwannakij, T., Blackall, P.J., Djordjevic, S.P., Cummins, M.L., Chansiripornchai,N., 2020. A comparison of virulence genes, antimicrobial resistance profiles and genetic diversity of avian pathogenic Escherichia coli (APEC) isolates from broilers and broiler breeders in Thailand and Australia. Avian. Pathol. 49(5), 457-466.

Thorsteinsdottir, T.R., Haraldsson, G., Fridriksdottir, V., Kristinsson, K.G., Gunnarsson,E., 2010. Broiler chickens as source of human fluoroquinolone-resistant Escherichia coli, Iceland. Emerg. Infect. Dis. 16(1), 133-135.

Tohmaz, M., Askari Badouei, M., Kalateh Rahmani, H., Hashemi Tabar, G., 2022. Antimicrobial resistance, virulence associated genes and phylogenetic background versus plasmid replicon types: the possible associations in avian pathogenic Escherichia coli (APEC). BMC. Vet. Res. 18(1), 1-15.

Trongjit, S., Angkittitrakul, S., Chuanchuen, R., 2016. Occurrence and molecular characteristics of antimicrobial resistance of Escherichia coli from broilers, pigs and meat products in Thailand and Cambodia provinces. Microbiol. Immunol. 60(9), 575-585.

van der Westhuizen, W.A., Bragg, R.R., 2012. Multiplex polymerase chain reaction for screening avian pathogenic Escherichia coli for virulence genes. Avian. Pathol.41(1), 33-40.

Varga, C., Brash, M.L., Slavic, D., Boerlin, P., Ouckama, R., Weis, A., Petrik, M., Philippe,C., Barham, M., Guerin, M.T., 2018. Evaluating virulence-associated genes and antimicrobial resistance of Avian Pathogenic Escherichia coli isolates from broiler

and broiler breeder chickens in Ontario, Canada. Avian. Dis. 62(3), 291-299.

Won, G.Y., Moon, B.M., Oh, I.G., Matsuda, K., Chaudhri, A.A., Hur, J., Eo, S.K., Yu, I.J.,Lee, Y.J., Lee, Y.S., Kim, B.S., Lee, J.H., 2009. Profiles of virulence-associated genes of avian pathogenic Escherichia coli isolates from chicken with colibacillosis. J. Poult. Sci. 46, 260-266.

Yang, H., Chen, S., White, D.G., Zhao, S., McDermott, P., Walker, R., Meng, J., 2004. Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. J. Clin. Microbiol. 42(8), 3483-3489.

Yoon, S., Lee, Y.J., 2022. Molecular characteristics of ESBL-producing Escherichia coli isolated from chickens with colibacillosis. J. Vet. Sci. 23(3), 1-8.