Effects of Essential Oils and Their Derivatives on Rumen Fermentation Characteristics and PUFA Biohydrogenation: A Meta-Analysis of In Vitro Studies https://doi.org/10.12982/VIS.2023.067

Main Article Content

Malik Makmur
Yulianri Rizki Yanza
Ainissya Fitri
Syarifuddin
Roni Ridwan
Anuraga Jayanegara

Abstract

The present meta-analysis study was aimed to determine effects of essential oil and their derivatives (EOD) supplementation as natural additives on rumen fermentation characteristics and rumen biohydrogenation (BH) activity in vitro. A meta-analysis database was built from the 28 verified scientific articles and further all data were analysed through the continuous random effects model using OpenMEE. It was evaluated that the EOD levels up to 500 mg/L. It showed that high EOD levels increased pH and acetate concentration (P < 0.001) but reduced ammonia, propionate, the acetate to propionate ratio, total volatile fatty acid, and rumen gas production in vitro (P < 0.001). On the perspective of rumen fatty acids profile, the increased EOD levels also positively accumulating n-9 monounsaturated fatty acid, conjugated linoleic acid c9 t11, as well as n-6 and n-3 polyunsaturated fatty acid (PUFA) in the rumen after in vitro fermentation (P < 0.001), and consequently inhibited rumen biohydrogenation (BH) of n-6 and n-3 PUFA (P < 0.001). Meta-regression analysis also showed a negative correlation between EOD supplementation levels and the BH of C18:2 n-6, C18:3 n-3, C20:5 n-3, and C22:6 n-3. It was suggested that the EOD supplementation at 300 mg/L indicated a positive effect on modulating the rumen PUFA metabolism. Above all evidences, it can be concluded that EOD treatment can reduce rumen fermentability but increase the proportion of beneficial fatty acids and inhibit the rate of BH PUFA.

Article Details

How to Cite
Makmur, M., Yulianri Rizki Yanza, Ainissya Fitri, Syarifuddin, Roni Ridwan, & Anuraga Jayanegara. (2023). Effects of Essential Oils and Their Derivatives on Rumen Fermentation Characteristics and PUFA Biohydrogenation: A Meta-Analysis of In Vitro Studies: https://doi.org/10.12982/VIS.2023.067. Veterinary Integrative Sciences, 21(3), 925–944. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/263695
Section
Review Article

References

Aldai, N., Delmonte, P., Alves, S.P., Bessa, R.J.B., Kramer, J.K.G., 2018. Evidence for the initial steps of DHA biohydrogenation by mixed ruminal microorganisms from sheep involves formation of conjugated fatty acids. J. Agric. Food. Chem. 66(4),842-855.

Al-Shuneigat, J.M., Al-Tarawneh, I.N., Al-Qudah, M.A., Al-Sarayreh, S.A., Al-Saraireh,Y.M., Alsharafa, K.Y., 2015. The chemical composition and the antibacterial properties of Ruta graveolens L. essential oil grown in Northern Jordan. Jordan. J.Biol. Sci. 8(2), 139-143.

Alves, S.P., Mendonça, S.H., Silva J.L., 2018. Nannochloropsis oceanica, a novel natural source of rumen-protected eicosapentaenoic acid (EPA) for ruminants. Sci. Rep. 8,10269.

Bartoš, F., Maier, M., Quintana, D.S., Wagenmakers, E., 2022. Adjusting for publication bias in JASP and R: selction models, pet-peese, robust bayesian meta-analysis. Adv.Meth. Pract. Psychol. Sci. 5(3), 1-19.

Benchaar, C., 2020. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J. Dairy. Sci. 103(2), 1516-1527.

Benchaar, C., Calsamiglia, S., Chaves, A.V., Fraser, G.R., Colombatto, D., McAllister, T.A.,Beauchemin, K.A., 2008. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed. Sci. Technol. 145(1–4), 209-228.

Benetel, G., Silva, T.D.S., Fagundes, G.M., Welter, K.C., Melo, F.A., Lobo, A.A.G., Muir,J.P., Bueno, I.C.S., 2022. Essential oils as in vitro ruminal fermentation manipulators to mitigate methane emission by beef cattle grazing tropical grasses.Molecules. 27, 2227.

Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F.J., López, S., 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed. Sci. Technol. 176(1-4), 78-93.

Benouchenne, D., Belil, I., Bensouici, C., Yilmaz, M.A., Akkal, S., Keskinkaya, H.B.,Khelifi, D., 2022. GC-MS chemical profile, antioxidant ability, antibacterial effect, a-glucosidase, a-amylase and acetylcholinesterase inhibitory activity of Algerian fir

essential oil. Jordan. J. Biol. Sci. 15(2), 303-310.

Bokharaeian, M., Chikunya, S., 2012. Effects of 3-carene, resorcinol, and p-cresol on the metabolism of polyunsaturated fatty acids by rumen microorganisms in vitro. Adv.Anim. Biosci. 3(1), 106.

Boonsaen, P., Innuruk, P., Phiriyangkul. P., Sawanon, S., 2010. Isolation of a novel fibrolytic bacterium from the buffalo rumen phylogenetically closely related to Clostridium bifermentans. In Proceeding of international conference on biotechnology for healthy living. Prince of Songkhla University, Trang, Thailand.pp. 787–795.

Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., Ferret, A., 2007. Invited review:essential oils as modifiers of rumen microbial fermentation. J. Dairy. Sci. 90,2580–2595.

Carrazco, A.V., Peterson, C.B., Zhao, Y., Pan, Y., McGlone, J.J., DePeters, E.J., Frank,M.M., 2020. The impact of essential oil feed supplementation on enteric gas emissions and production parameters from dairy cattle. Sustainability. 12(24),10347.

Cieslak, A., Szumacher-Strabel, M., Stochmal, A., Oleszek, W., 2013. Plant components with specific activities against rumen methanogens. Animal. 7(Supplement 2), 253-265.

Cobellis, G., Acuti, G., Forte, C., Menghini, L., De Vincenzi, S., Orrù, M., Valiani, A.,Pacetti, D., Trabalza-Marinucci, M., 2015. Use of Rosmarinus officinalis in sheep diet formulations: Effects on ruminal fermentation, microbial numbers and in situ degradability. Small. Rumin. Res. 126(Supplement 1), 10-18.

Daning, D.R.A., Hanim, C., Widyobroto, B.P., Yusiati, L.M., 2021. Characteristics of ruminal fatty acids using in vitro culture system by addition of galangal (Alpinia galangal). In Proceedings of the 9th international seminar on tropical animal

production. Faculty of Animal Science UGM, Indonesia, 21–22 September 2021.

Daning, D.R.A., Yusiati, L.M., Hanim, C., Widyobroto, B.P., 2022. Dietary supplementation of galangal (Alpinia galangal) essential oil affects rumen fermentation pattern. Adv.Anim. Vet. Sci. 10(2), 323-334.

Daning, D.R.A., Hanim, C., Widyobroto, B.P., Yusiati, L.M., 2020. The use essential oil as rumen modifier in dairy cows. Wartazoa. 30(4), 189-200.

de Vasconcelos, E.C., Longhi, D.A., Paganini, C.C., Severo, D.S., Canuto, K.M., Souza,A.S.Q., Figueiredo, E.A.T., Aragão, G.M.F., 2022. Modeling the effect of Croton blanchetianus Baill essential oil on pathogenic and spoilage bacteria. Arch.

Microbiol. 204, 618.

Dias, P.C.G., Ferreira, E.M.M., Santos, I.J., Carlis, M., Vicente, A.C.S., Silva, A.S., Assis, R.G., Comelli, J.H., Biava, J.S.S., Soares, L.C.B., Pires, A.V., 2022. PSVI-16 the essential oil of Arnica montana positively modulates the fatty acid profile of lamb meat. J. Anim. Sci. 100(Supplement 3), 403–404.

Dorantes-Iturbide, G., Orzuna-Orzuna, J.F., Lara-Bueno, A., Mendoza-Martínez, G.D.,Miranda-Romero, L.A., Lee-Rangel, H.A., 2022. Essential oils as a dietary additive for small ruminants: a meta-analysis on performance, rumen parameters, serum

metabolites, and product quality. Vet. Sci. 9, 475.

Doreau, M., Arturo-Schaan, M., Laverroux, S., 2017. Garlic oil reduces ruminal fatty acid biohydrogenation in vitro. Eur. J. Lipid Sci. Technol. 119(4), 1500388. Eburu, P.O., Anya, M.I., 2020. Dose-response effects of anise essential oil on rumen fermentation and metabolism of n-3 polyunsaturated fatty acids in vitro. Asian. J.Anim. Vet. Adv. 15, 25-31.

Eburu, P.O., Anya, M.I., 2018. The effect of essential oil combination on bio-hydrogenation of polyunsaturated fatty acids on West African dwarf goats. Online J. Anim. Feed Res. 8(5), 126-135.

Eburu, P.O., Chikunya, S., 2014. Assessment of the effects of fifteen compounds from essential oil extracts on the metabolism of polyunsaturated fatty acids by rumen microorganisms in vitro. Adv. Anim. Biosci. 5(1), 78.

Eburu, P.O., Chikunya, S., 2015a. Effects of ten whole essential oils on rumen fermentation and biohydrogenation of n-3 polyunsaturated fatty acids by rumen microorganisms in vitro. Adv. Anim. Biosci. 6(2), 203.

Eburu, P.O., Chikunya, S., 2015b. The effects of graded doses of 4‐allylanisole, anethole,anise oil and cassia oil on fermentation and biohydrogenation of n‐3 polyunsaturated fatty acids by rumen microorganisms in vitro. Adv. Anim. Biosci. 6(2), 204.

Eburu, P.O., Chikunya, S., Anya, M.I., Ozung, P.O., 2017. Effects of rumen exposure to anise oil on ruminal fermentation and biohydrogenation of n-3 polyunsaturated fatty acids. Glob. J. Pure. Appl. Sci. 23(2), 231-243.

Foskolos, A., Siurana, A., Rodriquez-Prado, M., Ferret, A., Bravo, D., Calsamiglia, S., 2015.The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture

system. J. Dairy. Sci. 98(8), 5482-5491.

Gherairia, N., Boukerche, S., Mustapha, M.A., Chefrour, A., 2022. Effects of biotic and abiotic factors on the yield and chemical composition of essential oils from four Thymus species wild-growing in Northeastern Algeria. Jordan J. Biol. Sci. 15(2),173-181.

Ghoneem, W.M.A., Mahmoud, A.E.M., 2022. Impact of incorporating Thymus vulgaris as leaves or essential oil in Damascus goats ration on lactation performance. Int. J.Dairy Sci. 17, 1-12.

Giannenas, I., Skoufos, J., Giannakopoulos, C., Wiemann, M., Gortzi, O., Lalas, S., Kyriazakis, I., 2011. Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy. Sci. 94(11), 5569-5577.

Gilman, F., Chikunya, S., 2014. The effects of whole clove bud oil or its three principal constituent components on the biohydrogenation of polyunsaturated fatty acids by rumen microorganisms in vitro. Adv. Anim. Biosci. 5(1), 84.

Guerreiro, O., Alves, S.P., Costa, M., Cabo, Â., Duarte, M.F., Jerónimo, E., Bessa, R.J.B., 2016. Effects of extracts obtained from Cistus ladanifer L. on in vitro rumen biohydrogenation. Anim. Feed. Sci. Technol. 219, 304-312.

Gunal, M., Ishlak, A., Abughazaleh, A.A., 2013. Evaluating the effects of six essential oils on fermentation and biohydrogenation in in vitro rumen batch cultures. Czech J.Anim. Sci. 558(6), 243-252.

Gunal, M., Ishlak, A., AbuGhazaleh, A.A., Khattab, W., 2014. Essential oil effect on rumen fermentation and biohydrogenation under in vitro conditions. Czech. J. Anim. Sci.59(10), 450-459.

Gurevitch, J., Nakagawa, S., 2015. Research synthesis methods in ecology. In: Fox, G.A.,Negrete-Yankelevich, S., Sosa, V.J. (Eds), Ecological Statistics: Contemporary theory and application. Oxford Academic, Oxford.

Huang, G., Zhang, Y., Xu, Q., Zheng, N., Zhao, S., Liu, K., Qu, X., Yu, J., Wang, J., 2020. DHA content in milk and biohydrogenation pathway in rumen: a review. PeerJ. 8, e10230.

Huws, S.A., Lee, M.R.F., Muetzel, S.M., Scott, M.B., Wallace, R.J., Scollan, N.D., 2010. Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS. Microbiol. Ecol. 73, 396–407.

Ishlak, A., Günal, M., AbuGhazaleh, A.A., 2015. The effects of cinnamaldehyde, monensin and quebracho condensed tannin on rumen fermentation, biohydrogenation and bacteria in continuous culture system. Anim. Feed. Sci. Technol. 207, 31-40.

Jeyanathan, J., Escobar, M., Wallace, R.J., Fievez, V., Vlaeminck, B., 2016. Biohydrogenation of 22:6 n-3 by Butyrivibrio proteoclasticus P18. BMC. Microbiol. 16, 104.

Jiménez-Ocampo, R., Montoya-Flores, M.D., Pamanes-Carrasco, G., Herrera-Torres, E.,Arango, J., Estarrón-Espinosa, M., Aguilar-Pérez, C.F., Araiza-Rosales, E.E.,Guerrero-Cervantes, M., Ku-Vera, J.C., 2022. Impact of orange essential oil on enteric methane emissions of heifers fed bermudagrass hay. Front. Vet. Sci. 9,863910.

Joch, M., Cermak, L., Hakl, J., Hucko, B., Duskova, D., Marounek, M., 2016. In vitro screening of essential oil active compounds for manipulation of rumen fermentation and methane mitigation. Anim. Biosci. 29(7), 952-959.

Khiaosa-ard, R., Zebeli, Q., 2013. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants. J. Anim. Sci. 91(4), 1819–1830.

Kilic, U., Boga, M., Gorgulu, M., Şahan, Z., 2011. The effects of different compounds in some essential oils on in vitro gas production. J. Anim. Feed. Sci. 20(4), 626-636.

Kim, H., Jung, E., Lee, H.G., Kim, B., Cho, S., Lee, S., Kwon, I., Seo, J., 2019. Essential oil mixture on rumen fermentation and microbial community – an in vitro study. Asian-Australas J. Anim. Sci. 32(6), 808-814.

Köknur, Ö., Beyzi, S.B., Konca, Y., 2021. Effects of dietary essential oil and live yeast supplementation on dairy performance, milk quality and fatty acid composition of dairy cows. Large Anim. Rev. 28, 15-20.

Lee, Y., 2013. Effect of pH on conjugated linoleic acid (CLA) formation of linolenic acid biohydrogenation by ruminal microorganisms. J. Microbiol. 51(4), 471–476.

Li, Z.H., Cai, M., Liu, Y.S., Sun, P.L., Luo, S.L., 2019. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules. 24, 1577.

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Ioannidis, J.P.A., Clarke,M., Devereaux, P.J., Kleijenen, J., Moher, D., 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 339, b2700.

Lourenço, M., Cardozo, P.W., Calsamiglia, S., Fievez, V., 2008. Effects of saponins,quercetin, eugenol, and cinnamaldehyde on fatty acid biohydrogenation of forage polyunsaturated fatty acids in dual-flow continuous culture fermenters. J. Anim. Sci.

(11), 3045–3053.

Lourenço, M., Falchero, L., Tava, A., Fievez, V., 2009. Alpine vegetation essential oils and their effect on rumen lipid metabolism in vitro. In Proceedings of the XIth international symposium on ruminant physiology. Wageningen Academic Publishers, Wageningen.

Lydia, M.W., Huang, S., Chalupa-Krebzdak, S., Mejía, S.M.V., Mandell, I.B., Bohrer, B.M.,2020. Effects of essential oils and(or) benzoic acid in beef finishing cattle diets on the fatty acid profile and shelf life stability of ribeye steaks and ground beef. Meat.

Sci. 168, 108195.

Makmur, M., Zain, M., Sholikin, M.M., Suharlina, Jayanegara, A., 2022. Modulatory effects of dietary tannins on polyunsaturated fatty acid biohydrogenation in the rumen: a meta-analysis. Heliyon. 8(7): e09828.

Mandal, G.P., Roy, A., Patra, A.K., 2016. Effects of plant extracts rich in tannins, saponins and essential oils on rumen fermentation and conjugated linoleic acid concentrations in vitro. Indian J. Anim. Hlth. 55(1), 49-60.

Miri, V.H., Ebrahimi, S.H., Tyagi, A.K., 2015. The effect of cumin (Cuminum cyminum) seed extract on the inhibition of PUFA biohydrogenation in the rumen of lactating goats via changes in the activity of rumen bacteria and linoleate isomerase enzyme.Small. Rumin. Res. 125, 56-63.

Nanon, A., Suksombat, W., Yang, W.Z., 2014. Effects of essential oils supplementation on in vitro and in situ feed digestion in beef cattle. Anim. Feed Sci. Technol. 196, 50-59.

Nehme, R., Andrés, S., Pereira, R.B., Ben Jemaa, M., Bouhallab, S., Ceciliani, F., López, S.,Rahali, F.Z., Ksouri, R., Pereira, D.M., Abdennebi-Najar, L., 2021. Essential oils in livestock: from health to food quality. Antioxidants. 10, 330.

Nguyen, Q.V., Malau-Aduli, B.S., Cavalieri, J., Nichols, P.D., Malau-Aduli, A.E.O., 2019.Enhancing omega-3 long-chain polyunsaturated fatty acid content of dairy-derived foods for human consumption. Nutrients. 11(4), 743.

Patra, A.K., 2011. Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian. J. Anim. Vet. Adv. 6, 416-428.

Purba, R.A.P., Yuangklang, C., Paengkoum, P., 2020. Enhanced conjugated linoleic acid and biogas production after ruminal fermentation with Piper betle L. supplementation.Ciênc. Rural. 50(7), e20191001.

Ramos-Morales, E., Martínez-Fernández, G., Abecia, L., Martin-García, A.I., Molina-Alcaide, E., Yáñez-Ruiz, D.R., 2013. Garlic derived compounds modify ruminal fatty acid biohydrogenation and induce shifts in the community in continuousculture

fermenters. Anim. Feed. Sci. Technol. 184(1–4), 38-48.

Ranilla, M.J., Andrés, S., Gini, C., Biscarini, F., Saro, C., Martín, A., Mateos, I., López,S., Javier F.G., Abdennebi-Najar, L., Pereira, D., Falleh H., Ksouri, R., Cremonesi,P., Castiglioni, B., Ceciliani, F., 2023. Effects of Thymbra capitata essential oil on in vitro fermentation end-products and ruminal bacterial communities. Sci. Rep. 13, 4153.

Righi, F., Simoni, M., Foskolos, A., Beretti, V., Sabbioni, A., Quarantelli, A., 2017. In vitro ruminal dry matter and neutral detergent fibre digestibility of common feedstuffs as affected by the addition of essential oils and their active compounds. J. Anim.Feed. Sci. 26(3), 204-212.

Rofiq, M.N., Negara, W., Martono, S., Gopar, R.A., Boga, M., 2021. Potential effect of some essential oils on rumen methane reduction and digestibility by in vitro incubation technique. IOP Conf. Ser.: Earth. Environ. Sci. 905, 012138.

Sakurama, H., Kishino, S., Mihara, K., Ando, A., Kita, K., Takahashi, S., Shimizu, S.,Ogawa, J., 2014. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria. J. Lipid. Res. 55(9), 1855-1863.

Schoonjans, F., 2017. MedCalc manual: easy-to-use statistical software. Independently published. pp. 382.

Scollan, N., Dhanoa, M., Choi, N., Maeng, W., Enser, M., Wood, J., 2001. Biohydrogenation and digestion of long chain fatty acids in steers fed on different sources of lipid. J.Agric. Sci. 136(3), 345-355.

Sgwane, T.S., 2014. Effect of essential oil compounds on metabolism of dietary polyunsaturated fatty acids by ruminal microorganisms in vitro (Doctor of Philosophy Thesis). University of Aberdeen, Scotland, United Kingdom.

Siurana, A., Ferret, A., Rodriguez, M., Vlaeminck, B., Fievez, V., Calsamiglia, S., 2018. Strategies to modify the ruminal biohydrogenation of polyunsaturated fatty acids and the production of trans-10, cis-12 C18:2 in vitro. Anim. Feed Sci. Technol. 235,158-165.

Stergiadis, S., Cabeza-Luna, I., Mora-Ortiz, M., Stewart, R.D., Dewhurst, R.J., Humphries,D.J., Watson, M., Roehe, R., Auffret, M.D., 2021. Unravelling the role of rumen microbial communities, genes, and activities on milk fatty acid profile using a combination of omics approaches. Front. Microbiol. 11, 590441.

Szumacher-Strabel, M., El-Sherbiny, M., Cieslak, A., Szczechowiak, J., Winiarska, H., 2015.Bioactive lipid components from ruminant milk and meat. Chapter 25. In: Biotechnology of bioactive compounds: sources and applications. Editors: Vijai K.

Gupta, Maria Tuohy, Anthonia O’Donovan, Mohtashim Lohani. John Wiley & Sons.UK. pp. 599–629.

Temmar, R., Rodríguez-Prado, M., Forgeard, G., Rougier, C., Calsamiglia, S., 2021.Interactions among natural active ingredients to improve the efficiency of rumen fermentation in vitro. Animals. 11(5), 1205.

Tiven, N.C., 2017. Minimize the hydrogenation of unsaturated fatty acid in the rumen with kaffir lime (Citrus hystrix) leaves. Bull. Anim. Sci. 41(3), 265-270.

Troegeler-Meynadier, A., Nicot, M.C., Bayourthe, C., Moncoulon, R., Enjalbert, F., 2003.Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro. J. Dairy. Sci. 86, 4054–4063.

Ye, D., Karnati, S.K.R., Wagner, B., Firkins, J.L., Eastridge, M.L., Aldrich, J.M., 2018.Essential oil and monensin affect ruminal fermentation and the protozoal population in continuous culture. J. Dairy. Sci. 101(6), 5069-5081.

Yu, J., Cai, L., Zhang, J., Yang, A., Wang, Y., Zhang, L., Guan, L.L., Qi, D., 2020. Effects of thymol supplementation on goat rumen fermentation and rumen microbiota in vitro. Microorganisms. 8(8), 1160.

Zhang, R., Bai, Y., Jia, L., Sun, J., Li, J., Kong, F., Wang, L., Zhang, X., Wang, Y., Liu, T.,Cheng, Q., Zhang, X., Zhang, K., Wu, J., Zhao, S., Lei, Z., 2022. Effects of oregano essential oil on meat quality, fatty acids and volatile flavor compounds in semitendinosus of pingliang red cattle. Chinese J. Anim. Nutr. 34(7), 4452-4463.

Zhu, Z., Mau, S., Zhu, W., 2012. Effects of ruminal infusion of garlic oil on fermentation dynamics, fatty acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats. Anim. Biosci. 25(7), 962-970.