Prevalence and antimicrobial resistance profile of Escherichia coli O157:H7 isolated from chickens and chicken meats from local poultry slaughterhouses in Nakhon Ratchasima Province, Thailand https://doi.org/10.12982/VIS.2024.051
Main Article Content
Abstract
This study sought to investigate the antimicrobial resistance profiles of Escherichia coli O157:H7 (EOH) isolated from chickens and chicken products at local poultry slaughterhouses in Nakhon Ratchasima Province, Thailand. EOH was isolated from cloacal swabs and chicken breast meat samples between January 2021 and June 2023. EOH were identified using a culture-based method and were confirmed on sorbitol MacConkey agar. Positive EOH isolates were tested via antimicrobial susceptibility testing and antimicrobial resistance profiles using the disk diffusion method and polymerase chain reaction. This study showed the prevalence of EOH isolated from chicken breast meat (11.47%) was higher than that of cloacal swab (9.32%). Most EOH isolates from cloacal swabs were resistant to oxytetracycline (65.38%), streptomycin (61.54%), amoxicillin (61.54%), and ampicillin (65.38%, and most EOH isolates from breast meat were resistant to oxytetracycline (78.12%), streptomycin (25%), amoxicillin (75%), and ampicillin (78.12%). In addition, 32 (55.17%) EOH isolates were multidrug resistant harbored the ESBL-TEM gene (65.38%), blaTEM (34.61%), int-1 (3.85%), or mcr-1 (0%). This is the first report of EOH isolated from chickens and chicken meats from domestic poultry slaughterhouses in Nakhon Ratchasima Province. Therefore, EOH is a public health concern in local poultry slaughterhouse processes in this area.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Adamu, M.T., Shamsul, B.T., Desa, M.N., Khairani-Bejo, S., 2014. A review on Escherichia coli O157: H7-the super pathogen. J. Environ. Health 5, 78–93.
Akter, S., Sabuj, A.A.M., Haque, Z.F., Kafi, M.A., Rahman, M.T., Saha, S., 2020. Detection of antibiotic-resistant bacteria and their resistance genes from houseflies. Vet. World 13, 266–274.
Aibinu, I.E., Peters, R.F., Amisu, K.O., Adesida, S.A., Ojo, M.O., Tolu, O., 2007. Multidrug resistance in E. coli O157 strain and the public health implication. Am. J. Sci. 3, 22–33.
Alhadlaq, M.A., Mujallad, M.I., Alajel, S.M.I., 2023. Detection of Escherichia coli O157:H7 in imported meat products from Saudi Arabian ports in 2017. Sci. Rep. 13, 4222–4228.
Amin, M.A., Hoque, M.N., Siddiki, A.Z., Saha, S., Kamal, M.M., 2020. Antimicrobial resistance situation in animal health of Bangladesh. Vet. World. 13, 2713–2727.
Antunes, P., Mourão, J., Campos, J. Peixe, L., 2016. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 22, 110–121.
Anyanwu, M.U., Ugwu, I.C., Okorie-Kanu, O.J., Ngwu, M.I., Kwabugge, Y.A., Aneke, C.I., Chah, K.F., 2022. Sorbitol non-fermenting Escherichia coli and E. coli O157: Prevalence and antimicrobial resistance profile of strains in slaughtered food animals in Southeast Nigeria. Access Microbiol. 4.
Asai, T., Sugiyama, M., Omatsu, T., Yoshikawa, M., Minamoto, T., 2022. Isolation of extended-spectrum β-lactamase-producing Escherichia coli from Japanese red fox (Vulpes vulpes japonica). MicrobiologyOpen 11, e1317.
Bauer, A.W., Kirby, W.M., Sherris, J.C. Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496.
Bhoomika, S.S., Shakya, S., Patyal, A., Gade, N.E., 2016. Occurrence and characteristics of extended-spectrum β-lactamases producing Escherichia coli in foods of animal origin and human clinical samples in Chhattisgarh, India. Vet. World 9, 996–1000.
Claire, V., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B., de Schaetzen, M.A., Van Huffel, X., Imberechts, H., Dierick, K., Daube, G., Saegerman, C., De Block, J., Dewulf, J., Herman, L., 2013. Antimicrobial resistance in the food chain: A Review. Int. J. Environ. Res. Public Health 10, 2643–2669.
Clinical and Laboratory Standards Institute, 2022. Performance standards for antimicrobial susceptibility testing; twenty-one informational supplement (document m100-ed32). Clinical and Laboratory Standards Institute, Pennsylvania.
Department of Livestock Development, 2019. Announcement of the department of livestock development: Establish a list of drugs that are prohibited to be used in animal feeds for prophylaxis purposes, B.E. 2562. Available online: /dldstreaming/
access.do?p=document%2FdocLocation_20190719_053801_1563532681834.pdf&m=img.
Diarrassouba, F., Diarra, M.S., Bach, S., Delaquis, P., Pritchard, J., Topp, E., Skura,B.J., 2007. Antibiotic resistance and virulence genes in commensal Escherichia coli and Salmonella isolates from commercial broiler chicken farms. J. Food Prot. 70,
–1327.
Eiamphungporn, W., Yainoy, S., Jumderm, C., Tan-Arsuwongkul, R., Tiengrim, S.,Thamlikitkul, V., 2018. Prevalence of the colistin resistance gene mcr-1 in colistinresistant Escherichia coli and Klebsiella pneumoniae isolated from humans in Thailand. J. Glob. Antimicrob. Resist. 15, 32–35.
Elsharawy, N.T., Al-Zahrani, H.A.A., El-Waseif, A.A., 2022. Molecular characterization of Escherichia coli co-resistance genes from chicken meat. Afr. J. Biotechnol. 21, 180–187.
Elsharawy, N.T., Al-Zahrani, H.A.A., El-Waseif, A.A., 2022. Phenotypic and genotypic characterization of antimicrobial resistance in Escherichia coli isolates from chicken meat. J. Food. Nutr. Res. 10, 98–104.
Fahim, A.S., Islam, Z.M., El-Sayed, A.A., 2020. Detection of E. coli O157 and Salmonella species in some raw chicken meat cuts in Ismailia Province, Egypt. Benha. Vet.Med. J. 39(1), 101–104.
Fuh, N.J., Christiana, O.M., Yami, A.L., Uteh, U.P., Ekpiken, E.S., Ogechi, U.M., 2018.Prevalence and antibiotic resistance of Escherichia coli O157:H7 serotype from chicken droppings produced by free-ranged and poultry birds in cross river, Nigeria.
Am. J. Biomed. Life. Sci. 6, 51–55.
Gharaibeh, M.H., Shatnawi, S.Q., 2019. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: a review. Vet. World. 12, 1735–1746.
Guran, H.S., Ciftci. R., Gursoy, N.C., Ozekinci, T., Alali, W.Q., 2020. Prevalence of antibiotic-resistant Salmonella in retail organic chicken. Br. Food. J. 122, 1238–1251.
Hosain, M.Z., Kabir, S.M.L., Kamai, M.M., 2021. Antimicrobial uses for livestock production in developing countries. Vet. World. 14, 210–221.
Jyoti, T., Shrayanee, D., Zeeshan, F., Saif, H., 2014. Review article multidrug resistance: an emerging crisis. Interdiscip. Perspect. Infect. Dis. 2014, 1–7.
Kiratisin, P., Anucha, A., 2012. Beta-Lactamase. VJ printing, Bangkok.
Lapierre, L., Cornejo, J., Zavala, S., Galarce, N., Sánchez, F., Benavides, M.B., Guzmán,M., Sáenz, L., 2020. Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella infantis strains isolated from chicken meat: First findings in chile. Animals (Basel). 10, 1–15.
Lertworapreecha, M., Noomee, S., Sutthimusik, S., Utarapichat, B., Tontikapong, K., 2016. Multidrug resistant and extended spectrum β–Lactamase producing Salmonella enterica isolated from food animals in Phatthalung, Thailand. Southeast. Asian. J.
Trop. Med. Public. Health 47, 1257–1269.
Luo, X., Matthews, K.R., 2023. The conjugative transfer of plasmid-mediated mobile colistin resistance gene, mcr-1, to Escherichia coli O157:H7 and Escherichia coli O104:H4 in nutrient broth and in mung bean sprouts. Food. Microbiol. 111, 104188.
Matthew, E.F., Drosos, E.K., 2008. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among gram-negative bacilli: need for international harmonization in terminology. Clin. Infect. Dis. 46, 1121–1122.
Miri, A., Rahimi, E., Mirlohi, M., Mahaki, B., Jalali, M., Safaei, H.G., 2022. Isolation of shiga toxin-producing Escherichia coli O157:H7/ NM from hamburger and chicken nugget. Int. J. Environ. Health. Eng. 3, 19–23.
Naing, L., Winn, T., Rusli, B.N., 2006. Practical issues in calculating the sample size for prevalence studies. Arch. Orofac. Sci., 1, 9–14.
Nakayama, T., Le Thi, H., Thanh, P.N., Minh, D.T.N., Hoang, O.N., Hoai, P.H., Yamaguchi,T., Jinnai, M., Do, P.N., Van, C.D., Kumeda, Y., Hase, A., 2022. Abundance of colistin-reistant Escherichia coli harbouring mcr-1 and extended-spectrum β-lactamase-producing E. coli co-harbouring blaCTX-M-55 or -65 with blaTEM isolates from chicken meat in Vietnam. Arch. Microbiol. 204, 137.
Peter, D.F., Sumit, S., Dhan, K.P., Subir, S. Melinda, J.W., 2021. Antimicrobial-resistant non-typhoidal Salmonella enterica prevalence among poultry farms and slaughterhouses in Chitwan, Nepal. Vet. World. 14, 437–445.
Ranasinghe, R.A.S.S., Satharasinghe, D.A., Anwarama, P.S., Parakatawella, P.K., Jayasooriya, L.P., Ranasinghe, R.K., Rajapakse, R.P.V.J., Huat, J.T.Y., Rukayadi, Y., Nakaguchi, Y., Nishibuchi, M., Radu, S., Premarathne, J.M.K.J.K., 2022. Prevalence and
antimicrobial resistance of Escherichia coli in chicken meat and edible poultry organs collected from retail shops and supermarkets of north western province in Sri Lanka. J. Food. Qual. 2022, 1–10.
Sakdinun, P., Sriwongsa, N., Wongmuk, S., 2018. Detection of colistin resistance and mcr-1 gene in Salmonella isolated from poultry in western Thailand during 2013-2016. KKU. Vet. J. 28, 1–10.
Sukon, P., 2013. Experimental design in veterinary medicine. Khon Kaen University, Khon Kaen. Suleman, D.R., Zulfiqar, S., Rojo, A.D.A., Shahid, M., 2022. Escherichia coli O157:H7 in meat and poultry: transmission, consequences on human health and impact of nonthermal decontamination technologies: a review. Agric. Sci. J. 4, 52–62.
Sarangi, N.R., Babu, L.K., Kumar, A., Pradhan, C.R., Pati, P.K., Mishra, J.P., 2016. Effect of dietary supplementation of prebiotic, probiotic, and symbiotic on growth performance and carcass characteristics of broiler chickens. Vet. World. 9, 313–319.
Shecho, M., Thomas, N., Kemal, J., Muktar, Y., 2017. Cloacael carriage and multidrug resistance Escherichia coli O157:H7 from poultry farms, eastern Ethiopia. J. Vet.Med. 2017, 8264583.
Sobur, M.A., Sabuj, A.A.M., Sarker, R., Rahman, A., Kabir, S.M.L., Rahman, M.T., 2019.Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. Vet. World. 12(7), 984-993.
Usui, M., Tamura, Y., Asai, T., 2022. Current status and future perspective of antimicrobialresistant bacteria and resistance genes in animal-breeding environments. J. Vet. Med.Sci. 84, 1292–1298.
Veterinary Council of Thailand Organization, 2020. Antimicrobial drugs in poultry for consumption. VCT, Bangkok. Wardhana, D.K., Haskito, A.E.P., Purnama, M.T.E., Safitri, D.A., Annisa, S., 2021. Detection of microbial contamination in chicken meat from local market in Surabaya, East Java, Indonesia. Vet. World. 14, 3138–3143.
Zhang, S., Huang, Y., Chen, M., Yang, G., Zhang, J., Wu, Q., Wang, J., Ding, Y., Ye, Q., Lei, T., Su, Y., Pang, R., Yang, R., Zhang, Y., 2022. Characterization of Escherichia coli O157: non-H7 isolated from retail food in China and first report of mcr-1/IncI2-
carrying colistin-resistant E. coli O157:H26 and E. coli O157:H4. Int. J. Food. Microbiol. 378, 1–12.
Zhu, W., Guo, H., Xu, J., Wu, W., Yi, Y., Wang, J., Duan, R., Tong, J., Du, Y., 2023. Enterohemorrhagic Escherichia coli O157:H7 – Xuzhou City, Jiangsu Province, China, 2001-2021. China. CDC. Wkly. 5(14), 311–314.