Unravelling key genes associated with ovine Brucellosis by differential gene expression analysis: A holistic bioinformatics study https://doi.org/10.12982/VIS.2024.030

Main Article Content

Varsha Ramesh
Uma Bharathi Indrabalan
Swati Rani
Kuralayanapalya Puttahonnappa Suresh
Nagendra Nath Barman
Azhahianambi Palavesam

Abstract

Ovine Brucellosis, caused by Brucella ovis bacteria, is a pathognomonic reproductive infectious disease of sheep that causes epididymitis in rams (male sheep) and placental inflammation in ewes (female sheep) leading to reduced fertility. The specific molecular process that causes alterations in genome of sheep during brucellosis is not yet fully understood. This study aimed to identify key host genes associated with the pathogenesis of ovine brucellosis caused by B. ovis. The GSE35614 dataset containing six healthy and six Brucella ovis infected sample of rams in the chronic phase 2 was obtained from the NCBI GEO database to examine and detect any differences in gene expression (DEGs). Functional and pathway enrichment analyse of the DEGs were performed along with the construction of protein-protein interaction network. Next, functional modules and hub genes were clustered and identified respectively, using the MCODE plugin. As a result, a total of 316 differentially expresses genes were filtered according to the provided cut-off criteria. The enriched DEGs were related to extracellular matrix interaction, cell adhesion mediated by integrin, angiogenesis, and inflammatory response. Furthermore, the hub gene analysis resulted in five hub genes namely, FN1, FBN1, CDH1, CD44, and SPP1, were up-regulated during the infection which could lead to reproductive disorders in sheep. In conclusion, the DEGs, functional and pathways terms, along with hub genes identified in the current study can provide prospective targets for the early diagnosis and treatment of brucellosis and provide insight into the molecular mechanism underlying the alterations that occur during brucellosis in sheep.

Article Details

How to Cite
Varsha Ramesh, Uma Bharathi Indrabalan, Swati Rani, Kuralayanapalya Puttahonnappa Suresh, Nagendra Nath Barman, & Azhahianambi Palavesam. (2023). Unravelling key genes associated with ovine Brucellosis by differential gene expression analysis: A holistic bioinformatics study: https://doi.org/10.12982/VIS.2024.030. Veterinary Integrative Sciences, 22(2), 419–444. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/264483
Section
Research Articles

References

Aaronson, D.S., Horvath, C.M., 2002. A road map for those who don't know JAK-STAT.Science. 296(5573), 1653-1655.

Akiyama, S.K., Yamada, S.S., Chen, W.T., Yamada, K.M., 1989. Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J. Cell Biol. 109(2), 863-875.

Anborgh, P.H., Mutrie, J.C., Tuck, A.B., Chambers, A.F., 2010. Role of the metastasispromoting protein osteopontin in the tumour microenvironment. J. Cell. Mol. Med.14, 2037–2044.

Bashir, I., Rather, M.A., Rather, J.M., Hajam, I.A., Baba, J.A., Shah, M.M., Haq, Z.U., 2020.Study of mortality pattern in an organized farming sector amongst kashmir merino sheep. Int. J. Curr. Microbiol. Appl. Sci. 9, 1570–1578.

Bedir, Ö., Gram, A., Grazul-Bilska, A.T., Kowalewski, M.P., 2023. The effects of follicle stimulating hormone (FSH)-induced controlled ovarian hyperstimulation and nutrition on implantation-related gene expression in caruncular tissues of nonpregnant sheep. Theriogenology. 195, 229–237.

Berkholtz, C.B., Lai, B.E., Woodruff, T.K., Shea, L.D., 2006. Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis. Histochem. Cell. Biol. 126, 583–592.

Blasco, J.M., 1990. Brucella Ovis, In: Nielsen, K., Duncan, J.R. (Eds.), Animal Brucellosis,CRC Press, Florida, pp. 351–378.

Bujold, A.R., MacInnes, J.I., 2015. Identification of putative adhesins of Actinobacillus suis and their homologues in other members of the family Pasteurellaceae. BMC Res.Notes. 8, 1–13.

Burton, G.J., Charnock-Jones, D.S., Jauniaux, E., 2009. Regulation of vascular growth and function in the human placenta. Reproduction. 138, 895–902.

Canty-Laird, E., Carré, G.A., Mandon-Pépin, B., Kadler, K.E., Fabre, S., 2010. First evidence of bone morphogenetic protein 1 expression and activity in sheep ovarian follicles. Biol. Reprod. 83, 138–146.

Carrera-Chávez, J.M., Quezada-Casasola, A., Pérez-Eguia, E., Itzá-Ortíz, M.F., Gutiérrez-Hernández, J.L., Quintero-Elisea, J.A., Tórtora-Pérez, J.L., 2016. Sperm quality in naturally infected rams with Brucella ovis. Small Rumin. Res. 144, 220–224.

Darribère, T., Schwarzbauer, J.E., 2000. Fibronectin matrix composition and organization can regulate cell migration during amphibian development. Mech. Dev. 92, 239–250.

de Paula Antunes, J.M.A., Allendorf, S.D., Appolinário, C.M., Peres, M.G., Vicente, A.F.,Cagnini, D.Q., de Castro Demoner, L., Figueiredo, P.R., Júnior, J.B., Galindo,R.C., 2015. Microarray analysis of gene expression in rams experimentally-infected

with the virulent strain of brucella ovis. J Biotechnol Biomater. 5(4), 1000203.

Dhanani, K.C.H., Samson, W.J., Edkins, A.L., 2017. Fibronectin is a stress responsive gene regulated by HSF1 in response to geldanamycin. Sci. Rep. 7, 1–13.

Fang, X., Duan, S.F., Gong, Y.Z., Wang, F., Chen, X.L., 2020. Identification of key genes associated with changes in the host response to severe burn shock: a bioinformatics analysis with data from the Gene Expression Omnibus (GEO) database. J. Inflamm.Res. 13, 1029–1041.

Ficapal, A., Jordana, J., Blasco, J.M., Moriyón, I., 1998. Diagnosis and epidemiology of Brucella ovis infection in rams. Small. Rumin. Res. 29, 13–19.

Foster, R.A., 2016. Male genital system. In: Maxie, M.G. (Ed.) Jubb, kennedy & palmer's pathology of domestic animals: Volume 3, (6th edition). W.B. Saunders, Ontario, pp.465-510.

Frixen, U.H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., Lochner, D.,Birchmeier, W., 1991. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell. Biol. 113, 173–185.

Gabler, C., Chapman, D.A., Killian, G.J., 2003. Expression and presence of osteopontin and integrins in the bovine oviduct during the oestrous cycle. Reproduction. 126, 721–729.

Galindo, R.C., Muñoz, P.M., de Miguel, M.J., Marin, C.M., Blasco, J.M., Gortazar, C.,Kocan, K.M., de la Fuente, J., 2009. Differential expression of inflammatory and immune response genes in rams experimentally infected with a rough virulent strain

of Brucella ovis. Vet. Immunol. Immunopathol. 127, 295–303.

Garlow, J.E., Ka, H., Johnson, G.A., Burghardt, R.C., Jaeger, L.A., Bazer, F.W., 2002. Analysis of osteopontin at the maternal-placental interface in pigs. Biol. Reprod. 66,718–725.

Grewal, S., Satinder, K., 2000. Survey of sheep and goat brucellosis in Sangrur district (Punjab, India). J. Parasitol. Appl. Anim. Biol. 9(2), 67-74.

Gupta, M.K., Behera, S.K., Dehury, B., Mahapatra, N., 2017. Identification and characterization of differentially expressed genes from human microglial cell samples infected with japanese encephalitis virus. J. Vector. Borne. Dis. 54, 131–138.

Hogue, C.W., Groll, M., 2001. An automated method for finding molecular complexes in large protein interaction networks. BMC. Bioinform. 29, 137–140.

Huet, C., Monget, P., Pisselet, C., Hennequet, C., Locatelli, A., Monniaux, D., 1998.Chronology of events accompanying follicular atresia in hypophysectomized ewes.Changes in levels of steroidogenic enzymes, connexin 43, insulin-like growth factor

II/mannose 6 phosphate receptor, extracellular matrix components, and matrix metalloprotein. Biol. Reprod. 58, 175–185.

Iwasaki, A., Sakai, K., Moriya, K., Sasaki, T., Keene, D.R., Akhtar, R., Miyazono, T.,Yasumura, S., Watanabe, M., Morishita, S., Sakai, T., 2016. Molecular mechanism responsible for fibronectin-controlled alterations in matrix stiffness in advanced chronic liver fibrogenesis. J. Biol. Chem. 291, 72–88.

Jandeleit-Dahm, K., Watson, A., Soro-Paavonen, A., 2008. The AGE/RAGE axis in diabetesaccelerated atherosclerosis. Clin. Exp. Pharmacol. Physiol. 35, 329–334.

Karimizadeh, E., Sharifi-zarchi, A., Nikaein, H., Salehi, S., Salamatian, B., Elmi, N., 2019.Analysis of gene expression profiles and protein-protein interaction networks in multiple tissues of systemic sclerosis. BMC. Med. Genom. 2, 1–12.

Liu, Y., Yi, Y., Wu, W., Wu, K., Zhang, W., 2019. Bioinformatics prediction and analysis of hub genes and pathways of three types of gynecological cancer. Oncol. Lett. 18,617–628.

McFarlane, D., Salisbury, R.M., Osborne, H.G., Jebson, J.L., 1952. Investigation into sheep abortion in New Zealand during the 1950 lambing season. Aust. Vet. J. 28, 221–226.

Meltzer, E., Sidi, Y., Smolen, G., Banai, M., Bardenstein, S., Schwartz, E., 2010. Sexually transmitted brucellosis in humans. Clin. Infect. Dis. 51(2), e12-e15.

Menzies, P.I., 2012. Vaccination programs for reproductive disorders of small ruminants.Anim. Reprod. Sci. 130, 162–172.

Merc, V., Frolikova, M., Komrskova, K., 2021. Role of integrins in sperm activation and fertilization. Int. J. Mol. Sci. 22(21), 11809.

Oliveira, S.C., Splitter, G.A., 1995. CD8+ Type 1 CD44hi CD45 RBlo T lymphocytes control intracellular Brucella abortus infection as demonstrated in major histocompatibility complex class I‐ and class II‐deficient mice. Eur. J. Immunol. 25, 2551–2557.

Pappas, G., Papadimitriou, P., Akritidis, N., Christou, L., Tsianos, E.V., 2006. The new global map of human brucellosis. Lancet. Infect. Dis. 6(2), 91–99.

Parikh, S.M., 2017. The angiopoietin-Tie2 signaling axis in systemic inflammation. J. Am.Soc. Nephrol. 28, 1973–1982.

Poester, F.P., Samartino, L.E., Santos, R.I., 2013. Pathogenesis and pathobiology of brucellosis in livestock. OIE. Rev. Sci. Tech. 32, 105–115.

Preissner, K.T., Bronson, R.A., 2007. The role of multifunctional adhesion molecules in spermatogenesis and sperm function: Lessons from hemostasis and defense? Semin.Thromb. Hemost. 33, 100–110.

Prince, C.W., Oosawa, T., Butler, W.T., Tomana, M., Bhown, A.S., Bhown, M.,Schrohenloher, R.E., 1987. Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. J. Biol. Chem. 262, 2900–2907.

Pulina, M.V., Hou, S.Y., Mittal, A., Julich, D., Whittaker, C.A., Holley, S.A., Hynes, R.O.,Astrof, S., 2011. Essential roles of fibronectin in the development of the left-right embryonic body plan. Dev. Biol. 354, 208–220.

Rajashekara, G., Eskra, L., Mathison, A., Petersen, E., Yu, Q., Harms, J., And, Splitter, G.,2006. Brucella: functional genomics and host–pathogen interactions. Anim. Health Res. Rev. 7(1-2), 1-11.

Reynolds, L.P., Borowicz, P.P., Vonnahme, K.A., Johnson, M.L., Grazul-Bilska, A.T.,Redmer, D.A., Caton, J.S., 2005. Placental angiogenesis in sheep models of compromised pregnancy. J. Physiol. 565, 43–58.

Reynolds, L.P., Redmer, D.A., 1995. Utero-placental vascular development and placental function. J. Anim. Sci. 73, 1839–1851.

Seleem, M.N., Boyle, S.M., Sriranganathan, N., 2010. Brucellosis: a re-emerging zoonosis. Vet. Microbiol. 140, 392–398.

Shome, R., Sahay, S., Triveni, K., Krithiga, N., Shome, B.R., Rahman, H., 2018. Evidence of ovine brucellosis due to Brucella ovis and Brucella melitensis in Karnataka, India.Indian. J. Anim. Sci. 88, 522–525.

Siiteri, J.E., Ensrud, K.M., Moore, A., Hamilton, D.W., 1995. Identification of osteopontin (OPN) mRNA and protein in the rat testis and epididymis, and on sperm. Mol.Reprod. Dev. 40, 16–28.

Takeichi, M., 1995. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–627.

Van Roy, F., Berx, G., 2008. The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci.65, 3756–3788.

Watt, D.A., 1970. T esticular Abnormalities and Spermatogenesis in the Merino Ram (Master’s Thesis). University of Sydney.

Wu, W., Dave, N., Tseng, G.C., Richards, T., Xing, E.P., Kaminski, N., 2005. Comparison of normalization methods for CodeLink Bioarray data. BMC. Bioinform. 6, 1–14.

Wulff, C., Weigand, M., Kreienberg, R., Fraser, H.M., 2003. Angiogenesis during primate placentation in health and disease. Reproduction. 126, 569–577.

Yarney, T.A., Sanford, L.M., 1990. Pubertal development of ram lambs: reproductive hormone concentrations as indices of postpubertal reproductive function. Can. J.Anim. Sci. 70, 149–157.

Yim, A., Smith, C., Brown, A.M., 2022. Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-, and neuronal cell ligand-receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunol. Rev. 311(1), 224-233.

Zhang, Y., Wu, S., Luo, F.H., Baiyinbatu, Liu, L.H., Hu, T.Y., Yu, B., Li, G.P., Wu, Y.J., 2014.CDH1, a novel surface marker of Spermatogonial stem cells in sheep testis. J. Integr.Agric. 13(8), 1759-1765.

Zhu, W., Nan, Y., Wang, S., Liu, W., 2019. Bioinformatics analysis of gene expression profiles of sex differences in ischemic stroke. Biomed. Res. Int, 2019, 2478453.