Effects of hydrogen peroxidase-inactivated vaccine against Streptococcus agalactiae infection in red tilapia (Oreochromis sp.) via different routes of administration https://doi.org/10.12982/VIS.2024.004

Main Article Content

Truong Quynh Nhu
Tran Ngoc Bich
Dang Thanh Duy
Bui Thi Bich Hang
Nguyen Thi Thu Hang
Nguyen Trong Ngu
Nguyen Thanh Phuong

Abstract

Hydrogen peroxidase-inactivated vaccines have recently developed in controlling infectious diseases in aquaculture. The present study aimed to compare the efficacy of the hydrogen peroxidase-inactivated Streptococcus agalactiae vaccine via different delivery routes (injection, immersion, and oral administration) in red tilapia (Oreochromis sp.) without using adjuvant. Fish were randomly divided into 4 groups including G1: Control treatment (without vaccine), G2: vaccine-based diet (oral administration), G3: vaccinated by immersion and G4: vaccinated by injection. After 6 weeks of the experiment, fish were intraperitoneally injected with S. agalactiae and the mortality was recorded in 14 days. The results showed that lysozyme activity was differentially increased according to the delivery routes of vaccine, organs and time of sampling. However, the specific antibody levels in all vaccinated groups were only increased in week 6 post-vaccination. After the challenge test with S. agalactiae, the serum lysozyme levels in G3 and G4 were significantly higher than the control group (G1), while the total white blood cells and specific antibody levels were significantly increased in G2 and G4 compared to the control (G1). Similarly, the hydrogen peroxidase-inactivated vaccine statistically reduced the cumulative mortality in
G2 (35.29%) and G4 (28.95%) compared to G1 (44.12%) after injected with the S. agalactiae. These results showed that the vaccine delivery routes by oral administration or injection may decrease the pathogen and show better protection for red tilapia than the immersion method. Further studies will be investigated to improve the efficacy of hydrogen peroxidaseinactivated vaccine via using different adjuvants.

Article Details

How to Cite
Truong Quynh Nhu, Tran Ngoc Bich, Dang Thanh Duy, Bui Thi Bich Hang, Nguyen Thi Thu Hang, Nguyen Trong Ngu, & Nguyen Thanh Phuong. (2023). Effects of hydrogen peroxidase-inactivated vaccine against Streptococcus agalactiae infection in red tilapia (Oreochromis sp.) via different routes of administration: https://doi.org/10.12982/VIS.2024.004. Veterinary Integrative Sciences, 22(1), 41–54. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/264684
Section
Research Articles

References

Abu Nor, N., M. Zamri-Saad, I.-S. Md Yasin, A. Salleh, F. Mustaffa-Kamal, M. F. Matori, and M. N. A. Azmai, 2020. Efficacy of whole cell inactivated Vibrio harveyi vaccine against vibriosis in a marine red hybrid tilapia (Oreochromis niloticus× O. mossambicus) model. Vaccines 8(4):734.

Adikesavalu, H., S. Banerjee, A. Patra, and T. J. Abraham, 2017. Meningoencephalitis in farmed monosex Nile tilapia (L.) caused by. Fish Aquat Life 25(3):187-200.

Amanna, I. J., H.-P. Raué, and M. K. Slifka, 2012. Development of a new hydrogen peroxide–based vaccine platform. Nat Med 18(6):974-979.

Amend, D. F, 1981. Potency testing of fish vaccines. Dev Boil Stand, 49, 447-454.

Bøgwald, J., and R. A. Dalmo, 2019. Review on immersion vaccines for fish: An update 2019.Microorganisms 7(12):627.

Brown, F, 1993. Review of accidents caused by incomplete inactivation of viruses. Dev biol stand 81:103-107.

Burton, D. R, 2002. Antibodies, viruses and vaccines. Nat Rev Immunol 2(9):706-713.

Byon, J. Y., T. Ohira, I. Hirono, and T. Aoki, 2006. Comparative immune responses in Japanese flounder, Paralichthys olivaceus after vaccination with viral hemorrhagic septicemia virus (VHSV) recombinant glycoprotein and DNA vaccine using a microarray analysis. Vaccine 24(7):921-930.

Collin, S. M., N. Shetty, and T. Lamagni, 2020. Invasive group B Streptococcus infections in adults, England, 2015–2016. Emerg Infect Dis. 26(6):1174.

Dien, L. T., T. P. H. Ngo, T. V. Nguyen, P. Kayansamruaj, K. R. Salin, C. V. Mohan, C.Rodkhum, and H. T. Dong, 2023. Non‐antibiotic approaches to combat motile Aeromonas infections in aquaculture: Current state of knowledge and future perspectives. Rev Aquac.

Ellis, A. I, 1990. Lysozyme assays. Techniques in fish immunology 1:101-103.

Evans, J., P. Klesius, and C. Shoemaker, 2006. An overvie.w of Streptococcus in warmwater fish. Aquaculture Health International 7:10-14.

Evans, J. J., P. H. Klesius, and C. A. Shoemaker, 2004. Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccine 22(27-28):3769-3773.

Evans, J. J., D. J. Pasnik, and P. H. Klesius, 2015. Differential pathogenicity of five Streptococcus agalactiae isolates of diverse geographic origin in N ile tilapia (Oreochromis niloticus L.). Aquac Res 46(10):2374-2381.

Fan, Y., Y. Mu, L. Lu, Y. Tian, F. Yuan, B. Zhou, C. Yu, Z. Wang, X. Li, and S. Lei, 2019. Hydrogen peroxide-inactivated bacteria induces potent humoral and cellular immune responses and releases nucleic acids. Int Immunopharmacol 69:389-397.

Hernández, E., J. Figueroa, and C. Iregui, 2009. Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study. J Fish Dis 32(3):247-252.

Huang, H.-Y., Y.-C. Chen, P.-C. Wang, M.-A. Tsai, S.-C. Yeh, H.-J. Liang, and S.-C. Chen,2014. Efficacy of a formalin-inactivated vaccine against Streptococcus iniae infection in the farmed grouper Epinephelus coioides by intraperitoneal immunization. Vaccine 32(51):7014-7020.

Laith, A., M. A. Ambak, M. Hassan, S. M. Sheriff, M. Nadirah, A. S. Draman, W. Wahab, W.N. W. Ibrahim, A. S. Aznan, and A. Jabar, 2017. Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus). Vet World 10(1):101.

Linh, N. V., P. Sangpo, S. Senapin, A. Thapinta, W. Panphut, S. St-Hilaire, C. Rodkhum, and H. T. Dong, 2022. Pre-treatment of Nile tilapia (Oreochromis niloticus) with ozone nanobubbles improve efficacy of heat-killed Streptococcus agalactiae immersion

vaccine. Fish Shellfish Immunol 123:229-237.

Martinez, G., J. Harel, and M. Gottschalk, 2001. Specific detection by PCR of Streptococcus agalactiae in milk. Can J Vet Res 65(1):68.

Milla, S., C. Mathieu, N. Wang, S. Lambert, S. Nadzialek, S. Massart, E. Henrotte, J. Douxfils,C. Mélard, and S. Mandiki, 2010. Spleen immune status is affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca fluviatilis. Fish Shellfish Immunol 28(5-6):931-941.

Misra, S., N. Sahu, A. Pal, B. Xavier, S. Kumar, and S. Mukherjee, 2006. Pre-and post-challenge immuno-haematological changes in Labeo rohita juveniles fed gelatinised or nongelatinised carbohydrate with n-3 PUFA. Fish Shellfish Immunol 21(4):346-356.

Monir, M. S., S. b. M. Yusoff, Z. b. M. Zulperi, H. b. A. Hassim, A. Mohamad, M. S. b. M. H. Ngoo, and M. Y. Ina-Salwany, 2020. Haemato-immunological responses and effectiveness of feed-based bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila infections in hybrid red tilapia (Oreochromis mossambicus ×O. niloticus). BMC Vet Res 16(1):226. doi: 10.1186/s12917-020-02443-y

Muktar, Y., S. Tesfaye, and B. Tesfaye, 2016. Present status and future prospects of fish vaccination: a review. J Vet Sci Technol 7(02):299.

Natt, M. P., and C. A. Herrick, 1952. A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poult Sci J 31(4):735-738.

Oanh, D. T. H., and N. T. Phuong, 2011. Isolation and characterization of Streptococcus agalactiae from red tilapia cultured in the Mekong Delta of Vietnam. Can Tho university journal of science 22c: 203-212. In Vietnamese.

Pang, M., L. Sun, T. He, H. Bao, L. Zhang, Y. Zhou, H. Zhang, R. Wei, Y. Liu, and R. Wang,2017. Molecular and virulence characterization of highly prevalent Streptococcus agalactiae circulated in bovine dairy herds. Vet Res 48(1):1-12.

Pasnik, D., J. Evans, V. Panangala, P. Klesius, R. Shelby, and C. Shoemaker, 2005. Antigenicity of Streptococcus agalactiae extracellular products and vaccine efficacy. J Fish Dis 28(4):205-212.

Prescott, J. F., J. I. MacInnes, F. Van Immerseel, J. D. Boyce, A. N. Rycroft, and J. A. Vázquez-Boland, 2022. Pathogenesis of bacterial infections in animals. Wiley Online Library.

Pretto‐Giordano, L. G., E. E. Müller, P. Klesius, and V. G. Da Silva, 2010. Efficacy of an experimentally inactivated Streptococcus agalactiae vaccine in Nile tilapia (Oreochromis niloticus) reared in Brazil. Aquac Res 41(10):1539-1544.

Quan, P., H. Thuy, N. Vu, H. Le, and L. Khoa, 2013. Biochemical characteristics of Streptococcus spp. isolated from tilapia with hemorrhagic disease in some northern provinces of Vietnam. Journal of Science and Development 11:506-513. In Vietnamese.

Ramos-Espinoza, F. C., V. A. Cueva-Quiroz, J. Yunis-Aguinaga, N. C. Alvarez-Rubio, N. P.de Mello, and J. R. E. de Moraes, 2020a. Efficacy of two adjuvants administrated with a novel hydrogen peroxide-inactivated vaccine against Streptococcus agalactiae in Nile tilapia fingerlings. Fish Shellfish Immunol 105:350-358.

Ramos-Espinoza, F. C., V. A. Cueva-Quiroz, J. Yunis-Aguinaga, and J. R. E. de Moraes, 2020b. A comparison of novel inactivation methods for production of a vaccine against Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. Aquac Res 528:735484.

Rowley, A, 1990. Collection, seperation and identification of fish leucocytes. "Techniques in fish immunology":113-135.

Saurabh, S., and P. Sahoo, 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39(3):223-239.

Wongsathein, D., N. Kaewngernsong, S. Raksri, R. Khattiya, T. Potha, and S. Boonyayatra, 2018. Identification and characterization of Streptococcus agalactiae recovered from farmed tilapia in Chiang Mai. Vet Integr Sci 16(3):271-284.

Wu, X., J. Xing, X. Tang, X. Sheng, H. Chi, and W. Zhan, 2022. Protective cellular and humoral immune responses to Edwardsiella tarda in flounder (Paralichthys olivaceus) immunized by an inactivated vaccine. Mol Immunol 149:77-86.