Immune evasion mechanisms of porcine epidemic diarrhea virus: A comprehensive review https://doi.org/10.12982/VIS.2024.014

Main Article Content

Fredmoore L. Orosco

Abstract

Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes significant economic losses to the swine industry worldwide. Understanding the host immune response to PEDV is crucial for developing effective control strategies. This review provides a comprehensive analysis of the host innate immune response against PEDV, with a focus on the modulation of interferon responses, regulation of apoptosis, and induction of endoplasmic reticulum (ER) stress. Several PEDV proteins have been identified as potent interferon antagonists that inhibit key components of the signaling pathway and suppress the production of type I and type III interferons. PEDV also induces apoptotic cell death through the activation of caspases, notably caspase-3 and caspase-8. Finally, PEDV infection induces ER stress, leading to activation of the unfolded protein response (UPR). Understanding these mechanisms provides valuable insights into PEDV pathogenesis and offers potential targets for therapeutic intervention. Future research should aim to address the remaining knowledge gaps to develop more effective strategies for controlling PEDV and other related coronaviruses.

Article Details

How to Cite
Fredmoore L. Orosco. (2023). Immune evasion mechanisms of porcine epidemic diarrhea virus: A comprehensive review: https://doi.org/10.12982/VIS.2024.014. Veterinary Integrative Sciences, 22(1), 171–192. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/265146
Section
Research Articles

References

Arai, K., Kobayashi, M., Harada, Y., Hara, Y., Michishita, M., Ohkusu-Almeida, M.S., Johnson, M.A., Herrmann, T., Geralt, M., Wüthrich, K., 2007. Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J.Virol. 81, 3151–3161.

Antas, M., Woźniakowski, G., 2019. Current status of Porcine Epidemic Diarrhoea (PED) in european Pigs. J. Vet. Res. 63, 465–470.

Boonsoongnern, P., Boonsoongnern, A., Pongchairerk, U., Paompa, T., 2018. The comparison of villous damage at different ages of piglets infected with porcine epidemic diarrhea virus. Vet. Integr. Sci. 16(1), 37-46.

Chen, H., Ning, X., Jiang, Z., 2017. Caspases control antiviral innate immunity. Cell. Mol.Immunol. 14, 736–747.

Chen, N., Li, S., Zhou, R., Zhu, M., He, S., Ye, M., Huang, Y., Li, S., Zhu, C., Xia, P., Zhu, J.,2017. Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants. Virus. Res. 242, 90-95.

Chen, Y., Zhang, Z., Li, J., Gao, Y., Zhou, L., Ge, X., Han, J., Guo, X., Yang, H., 2018. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis. Virol. J. 15, 170.

de Haan, C.A., Kuo, L., Masters, P.S., Vennema, H., Rottier, P.J., 1998. Coronavirus particle assembly: primary structure requirements of the membrane protein. J. Virol. 72,6838–6850.

de Wilde, A.H., Snijder, E.J., Kikkert, M., van Hemert, M.J., 2018. Host Factors in Coronavirus Replication. Curr. Top. Microbiol. Immunol. 419, 1–42.

Decroly, E., Imbert, I., Coutard, B., Bouvet, M., Selisko, B., Alvarez, K., Gorbalenya, A.E.,Snijder, E.J., Canard, B., 2008. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2’O)-methyltransferase activity. J. Virol. 82,8071–8084.

Deng, X., Baker, S.C., 2018. An “old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology. 517, 157-163.

Deng, X., Hackbart, M., Mettelman, R.C., O’Brien, A., Mielech, A.M., Yi, G., Kao, C.C.,Baker, S.C., 2017. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc. Natl. Acad. Sci. 114, E4251–E4260.

Deng, X., van Geelen, A., Buckley, A.C., O’Brien, A., Pillatzki, A., Lager, K.M., Faaberg,K.S., Baker, S.C., 2019. Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses. J. Virol. 93, e02000-18.

Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Luo, R., Chen, H., Xiao,S., 2014. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. J.Virol. 88, 8936–8945.

Ding, Z., Fang, L., Yuan, S., Zhao, L., Wang, X., Long, S., Wang, M., Wang, D., Foda, M.F.,Xiao, S., 2017. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation. Oncotarget. 8,49655–49670.

Dragan, A.I., Hargreaves, V.V., Makeyeva, E.N., Privalov, P.L., 2007. Mechanisms of activation of interferon regulator factor 3: the role of C-terminal domain phosphorylation in IRF-3 dimerization and DNA binding. Nucleic. Acids. Res. 35,3525–3534.

Eckert, D.M., Kim, P.S., 2001. Mechanisms of viral membrane fusion and its inhibition. Annu.Rev. Biochem. 70, 777–810.

Egloff, M.P., Benarroch, D., Selisko, B., Romette, J.L., Canard, B., 2002. An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO. J. 21, 2757–2768.

Fang, R., Jiang, Q., Zhou, X., Wang, C., Guan, Y., Tao, J., Xi, J., Feng, J.M., Jiang, Z., 2017.MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner. PLOS. Pathog. 13, e1006720.

Fung, T.S., Liao, Y., Liu, D.X., 2016. Regulation of stress responses and translational control by Coronavirus. Viruses. 8, 184.

Fung, T.S., Liu, D.X., 2014. Coronavirus infection, ER stress, apoptosis and innate immunity. Front. Microbiol. 5, 296.

Gallien, S., Andraud, M., Moro, A., Lediguerher, G., Morin, N., Gauger, P.C., Bigault, L.,Paboeuf, F., Berri, M., Rose, N., Grasland, B., 2018. Better horizontal transmission of a US non-InDel strain compared with a French InDel strain of porcine epidemic diarrhoea virus. Transbound. Emerg. Dis. 65, 1720–1732.

Gerdts, V., Zakhartchouk, A., 2017. Vaccines for porcine epidemic diarrhea virus and other swine Coronaviruses. Vet. Microbiol. 206, 45-51.

Guo, L., Luo, X., Li, R., Xu, Y., Zhang, J., Ge, J., Bu, Z., Feng, L., Wang, Y., 2016. Porcine ep idemic diarrhea virus infection inhibits interferon signaling by targeted degradation of STAT1. J. Virol. 90, 8281–8292.

Hou, X.L., Yu, L.Y., Liu, J., 2007. Development and evaluation of enzyme-linked immuno sorbent assay based on recombinant nucleocapsid protein for detection of porcine epidemic diarrhea (PEDV) antibodies. Vet. Microbiol. 123, 86–92.

Hu, H., Sun, S.C., 2016. Ubiquitin signaling in immune responses. Cell. Res. 26, 457–483.

Hu, Y., Li, W., Gao, T., Cui, Y., Jin, Y., Li, P., Ma, Q., Liu, X., Cao, C., 2017. The Severe acute respiratory syndrome Coronavirus nucleocapsid inhibits Type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination. J. Virol. 91, e02143-16.

Huan, C., Wang, Y., Ni, B., Wang, R., Huang, L., Ren, X., Tong, G., Ding, C., Fan, H., Mao,X., 2015. Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor. Arch. Virol. 160, 1621–1628.

Huang, Y.W., Dickerman, A.W., Piñeyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng,X.J., 2013. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. mBio. 4(5), e00737-00713.

Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., Masters, P.S., 2010. An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. J. Virol. 84, 10276–10288.

Jansson, A.M., 2013. Structure of alphacoronavirus transmissible gastroenteritis virus nsp1 has implications for coronavirus nsp1 function and evolution. J. Virol. 87, 2949–2955.

Jantraphakorn, Y., Viriyakitkosol, R., Jongkaewwattana, A., Kaewborisuth, C., 2021. Interaction between PEDV and its hosts: a closer look at the ORF3 accessory protein.Front. Vet. Sci. 8, 744276.

Jung, K., Renukaradhya, G.J., Alekseev, K.P., Fang, Y., Tang, Y., Saif, L.J., 2009. Porcine reproductive and respiratory syndrome virus modifies innate immunity and alters disease outcome in pigs subsequently infected with porcine respiratory coronavirus: implications for respiratory viral co-infections. J. Gen. Virol. 90, 2713–2723.

Jung, K., Saif, L.J., 2015. Porcine epidemic diarrhea virus infection: etiology, epidemiology,pathogenesis and immunoprophylaxis. Vet. J. 204, 134–143.

Kim, Y., Lee, C., 2014. Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor. Virology.460, 180–193.

Kim, Y., Yang, M., Goyal, S.M., Cheeran, M.C.J., Torremorell, M., 2017. Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus. BMC. Vet. Res. 13, 89.

Kumar, S., 2007. Caspase function in programmed cell death. Cell. Death. Differ. 14(1), 32–43.

Li, C., Li, Z., Zou, Y., Wicht, O., van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., 2013. Manipulation of the porcine epidemic diarrhea virus genome using targeted RNA recombination. PloS. One. 8, e69997.

Li, R., Qiao, S., Yang, Y., Guo, J., Xie, S., Zhou, E., Zhang, G., 2016. Genome sequencing and analysis of a novel recombinant porcine epidemic diarrhea virus strain from Henan,China. Virus. Genes. 52, 91–98.

Li, R., Qiao, S., Yang, Y., Su, Y., Zhao, P., Zhou, E., Zhang, G., 2014. Phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in central China based on the ORF3 gene and the main neutralization epitopes. Arch. Virol. 159, 1057–1065.

Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X., He, Q., 2012. New variants of porcine epidemic diarrhea virus, China, 2011. Emerg. Infect. Dis. 18(8), 1350-1353.

Li, W., van Kuppeveld, F.J.M., He, Q., Rottier, P.J.M., Bosch, B.J., 2016. Cellular entry of the porcine epidemic diarrhea virus. Virus. Res. 226, 117-127.

Li, Y., Wu, Q., Huang, L., Yuan, C., Wang, J., Yang, Q., 2018. An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine. Nat. Commun.9, 3811.

Li, Z., Ma, Z., Li, Y., Gao, S., Xiao, S., 2020. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microb. Pathog. 149, 104553.

Liu, C., Ma, Y., Yang, Y., Zheng, Y., Shang, J., Zhou, Y., Jiang, S., Du, L., Li, J., Li, F., 2016. Cell entry of porcine epidemic diarrhea Coronavirus is activated by Lysosomal Proteases *. J. Biol. Chem. 291, 24779–24786.

Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Jiang, S., Li, J., Du, L., Li, F., 2015. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J. Virol. 89, 6121–6125.

Liwnaree, B., Narkpuk, J., Sungsuwan, S., Jongkaewwattana, A., Jaru-Ampornpan, P., 2019.Growth enhancement of porcine epidemic diarrhea virus (PEDV) in Vero E6 cells expressing PEDV nucleocapsid protein. PLOS. ONE. 14, e0212632.

Lowe, J., Gauger, P., Harmon, K., Zhang, J., Connor, J., Yeske, P., Loula, T., Levis, I., Du fresne, L., Main, R., 2014. Role of transportation in spread of porcine epidemic diarrhea virus infection, united states. Emerg. Infect. Dis. 20(5), 872-874.

McBride, R., Van Zyl, M., Fielding, B.C., 2014. The Coronavirus Nucleocapsid Is a Multifunctional Protein. Viruses. 6, 2991–3018.

Menachery, V.D., Debbink, K., Baric, R.S., 2014. Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus. Res. 194, 191–199.

Nguyen, V.P., Hogue, B.G., 1997. Protein interactions during coronavirus assembly. J. Virol. 71, 9278–9284.

Niederwerder, M.C., Nietfeld, J.C., Bai, J., Peddireddi, L., Breazeale, B., Anderson, J., Kerrig an, M.A., An, B., Oberst, R.D., Crawford, K., Lager, K.M., Madson, D.M., Rowland, R.R.R., Anderson, G.A., Hesse, R.A., 2016. Tissue localization, shedding, virus

carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs. J. Vet. Diagn. Invest. 28, 671–678.

Park, J.E., Shin, H.J., 2014. Porcine epidemic diarrhea virus infects and replicates in porcine alveolar macrophages. Virus. Res. 191, 143–152.

Pensaert, M.B., Martelli, P., 2016. Porcine epidemic diarrhea: a retrospect from Europe and matters of debate. Virus. Res. 226, 1–6.

Perri, A.M., Poljak, Z., Dewey, C., Harding, J.C.S., O’Sullivan, T.L., 2018. An epidemiological investigation of the early phase of the porcine epidemic diarrhea (PED) outbreak in Canadian swine herds in 2014: A case-control study. Prev. Vet.Med. 150, 101–109.

Raamsman, M.J., Locker, J.K., de Hooge, A., de Vries, A.A., Griffiths, G., Vennema, H.,Rottier, P.J., 2000. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J. Virol. 74, 2333–2342.

Reguera, J., Santiago, C., Mudgal, G., Ordoño, D., Enjuanes, L., Casasnovas, J.M., 2012.Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhi bition by Neutralizing Antibodies. PLOS. Pathog. 8, e1002859.

Ron, D., Walter, P., 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol. 8, 519–529.

Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., 2012. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg. Infect. Dis. 18(1), 161-163.

Schumacher, L.L., Cochrane, R.A., Huss, A.R., Gebhardt, J.T., Woodworth, J.C., Stark, C.R.,Jones, C.K., Bai, J., Main, R.G., Chen, Q., Zhang, J., Gauger, P.C., DeRouchey, J.M., Goodband, R.D., Tokach, M.D., Dritz, S.S., 2018. Feed batch sequencing to decrease

the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination during feed manufacturing1. J. Anim. Sci. 96, 4562–4570.

Schumacher, L.L., Huss, A.R., Cochrane, R.A., Stark, C.R., Woodworth, J.C., Bai, J., Poulsen,E.G., Chen, Q., Main, R.G., Zhang, J., Gauger, P.C., Ramirez, A., Derscheid, R.J.,Magstadt, D.M., Dritz, S.S., Jones, C.K., 2017. Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility. PLOS. ONE 12, e0187309.

Scott, A., McCluskey, B., Brown-Reid, M., Grear, D., Pitcher, P., Ramos, G., Spencer, D.,Singrey, A., 2016. Porcine epidemic diarrhea virus introduction into the United States: Root cause investigation. Prev. Vet. Med. 123, 192–201.

Sergeev, O.V., 2009. Porcine epidemic diarrhea. Vopr. Virusol. 54, 4–8.

Shan, Y., Liu, Z., Li, G., Chen, C., Luo, H., Liu, Y., Zhuo, X., Shi, X., Fang, W., Li, X., 2018. Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation. J. Zhejiang Univ.Sci. B. 19, 570–580.

Shi, D., Shi, H., Sun, D., Chen, J., Zhang, X., Wang, Xiaobo, Zhang, J., Ji, Z., Liu, J., Cao, L., Zhu, X., Yuan, J., Dong, H., Wang, Xin, Chang, T., Liu, Y., Feng, L., 2017. Nucleocapsid Interacts with NPM1 and Protects it from Proteolytic Cleavage, Enhancing Cell Survival, and is Involved in PEDV Growth. Sci. Rep. 7, 39700.

Shi, P., Su, Y., Li, R., Liang, Z., Dong, S., Huang, J., 2019. PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus. Res. 265, 57–66.

Snijder, E.J., Decroly, E., Ziebuhr, J., 2016. The nonstructural proteins directing Coronavirus RNA synthesis and processing. In: Ziebuhr, J. (Ed.), Advances in virus research,Coronaviruses. Academic Press, London, pp. 59–126.

Song, D., Park, B., 2012. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus. Genes. 44, 167–175.

St. John, S.E., Anson, B.J., Mesecar, A.D., 2016. X-Ray structure and inhibition of 3C-like protease from porcine epidemic diarrhea virus. Sci. Rep. 6, 25961.

Su, Y., Hou, Y., Wang, Q., 2019. The enhanced replication of an S-intact PEDV during coinfection with an S1 NTD-del PEDV in piglets. Vet. Microbiol. 228, 202–212.

Subissi, L., Imbert, I., Ferron, F., Collet, A., Coutard, B., Decroly, E., Canard, B., 2014. SARS-CoV ORF1b-encoded nonstructural proteins 12–16: Replicative enzymes as antiviral targets. Antiviral. Res. 101, 122–130.

Sun, D., Feng, L., Shi, H., Chen, J., Cui, X., Chen, H., Liu, S., Tong, Y., Wang, Y., Tong, G., 2008. Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Vet. Microbiol. 131, 73–81.

Sun, Y., Chen, Y., Han, X., Yu, Z., Wei, Y., Zhang, G., 2019. Porcine epidemic diarrhea virus in Asia: An alarming threat to the global pig industry. Infect. Genet. Evol. J. Mol.Epidemiol. Evol. Genet. Infect. Dis. 70, 24–26.

Torres, J., Maheswari, U., Parthasarathy, K., Ng, L., Liu, D.X., Gong, X., 2007. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. Publ. Protein. Soc. 16, 2065–2071.

Van Diep, N., Choijookhuu, N., Fuke, N., Myint, O., Izzati, U.Z., Suwanruengsri, M., Hishi kawa, Y., Yamaguchi, R., 2020. New tropisms of porcine epidemic diarrhoea virus (PEDV) in pigs naturally coinfected by variants bearing large deletions in the spike (S) protein and PEDVs possessing an intact S protein. Transbound. Emerg. Dis. 67,2589–2601.

van Hemert, M.J., van den Worm, S.H.E., Knoops, K., Mommaas, A.M., Gorbalenya, A.E.,Snijder, E.J., 2008.SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS. Pathog. 4(5), e1000054.

Wang, D., Fang, L., Xiao, S., 2016. Porcine epidemic diarrhea in China. Virus Res. 226, 7–13.

Wang, K., Lu, W., Chen, J., Xie, S., Shi, H., Hsu, H., Yu, W., Xu, K., Bian, C., Fischer, W.B.,Schwarz, W., Feng, L., Sun, B., 2012. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS. Lett. 586, 384–391.

Wang, X., Niu, B., Yan, H., Gao, D., Yang, X., Chen, L., Chang, H., Zhao, J., Wang, C., 2013. Genetic properties of endemic Chinese porcine epidemic diarrhea virus strains isolated since 2010. Arch. Virol. 158, 2487–2494.

Wicht, O., Li, W., Willems, L., Meuleman, T.J., Wubbolts, R.W., van Kuppeveld, F.J.M.,Rottier, P.J.M., Bosch, B.J., 2014. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture. J. Virol. 88, 7952–7961.

Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Teng, J.L.L., Tsang, C.C.C., Wang, M., Zheng, B.J., Chan, K.H., Yuen, K.Y., 2012.Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995–4008.

Xing, Y., Chen, J., Tu, J., Zhang, B., Chen, X., Shi, H., Baker, S.C., Feng, L., Chen, Z., 2013. The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. J. Gen. Virol. 94, 1554–1567.

Xu, X., Zhang, H., Zhang, Q., Dong, J., Liang, Y., Huang, Y., Liu, H.J., Tong, D., 2013a. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression. Virol. J. 10, 26.

Xu, X., Zhang, H., Zhang, Q., Huang, Y., Dong, J., Liang, Y., Liu, H.J., Tong, D., 2013b. Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces en doplasmic reticulum stress, and up-regulates interleukin-8 expression. Vet.Microbiol. 164, 212–221.

Xu, X.G., Zhang, H.L., Zhang, Q., Dong, J., Huang, Y., Tong, D.W., 2015. Porcine epidemic diarrhea virus M protein blocks cell cycle progression at S-phase and its subcellular localization in the porcine intestinal epithelial cells. Acta. Virol. 59, 265–275.

Xue, Qiao, Liu, H., Zhu, Z., Yang, F., Ma, L., Cai, X., Xue, Qinghong, Zheng, H., 2018. Seneca Valley Virus 3Cpro abrogates the IRF3- and IRF7-mediated innate immune response by degrading IRF3 and IRF7. Virology. 518, 1–7.

Ye, S., Li, Z., Chen, F., Li, W., Guo, X., Hu, H., He, Q., 2015. Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV. Virus. Genes. 51, 385–392.

Yuan, L., Chen, Z., Song, S., Wang, S., Tian, C., Xing, G., Chen, X., Xiao, Z.X., He, F., Zhang, L., 2015. P53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. J. Biol. Chem. 290, 3172–3182.

Zhang, L., Zhao, X., Zhang, M., Zhao, W., Gao, C., 2014. Ubiquitin-specific protease 2b negatively regulates IFN-β production and antiviral activity by targeting tank-binding kinase 1. J. Immunol. 193, 2230–2237.

Zhang, Q., Jia, Q., Gao, W., Zhang, W., 2022. The role of deubiquitinases in virus replication and host innate immune response. Front. Microbiol. 13, 839624.

Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., 2018. Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling.J. Virol. 92, e01677-17.

Zhang, Q., Ma, J., Yoo, D., 2017. Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion. Virology. 510, 111–126.

Zhang, Q., Shi, K., Yoo, D., 2016. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology.489, 252–268.

Zhang, Q., Yoo, D., 2016. Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling. Virus. Res. 226, 128–141.

Zhao, T., Yang, L., Sun, Q., Arguello, M., Ballard, D.W., Hiscott, J., Lin, R., 2007. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat. Immunol. 8, 592–600.

Zheng, D., Chen, G., Guo, B., Cheng, G., Tang, H., 2008. PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res. 18, 1105–1113.

Zheng, L., Wang, X., Guo, D., Cao, J., Cheng, L., Li, X., Zou, D., Zhang, Y., Xu, J., Wu, X.,Shen, Y., Wang, H., Yu, W., Li, L., Xiao, L., Song, B., Ma, J., Liu, X., Li, P., Xu, S.,Xu, X., Zhang, H., Wu, Z., Cao, H., 2021. Porcine epidemic diarrhea virus E protein suppresses RIG-I signaling-mediated interferon-β production. Vet. Microbiol. 254, 108994.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R.,Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733.

Zhu, X., Fang, L., Wang, D., Yang, Y., Chen, J., Ye, X., Foda, M.F., Xiao, S., 2017a. Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO. Virology. 502, 33–38.

Zhu, X., Wang, D., Zhou, J., Pan, T., Chen, J., Yang, Y., Lv, M., Ye, X., Peng, G., Fang, L.,Xiao, S., 2017b. Porcine deltacoronavirus nsp5 antagonizes Type I interferon signaling by cleaving STAT2. J. Virol. 91, e00003-17.

Zou, D., Xu, J., Duan, X., Xu, X., Li, P., Cheng, L., Zheng, L., Li, X., Zhang, Y., Wang, X., Wu,X., Shen, Y., Yao, X., Wei, J., Yao, L., Li, L., Song, B., Ma, J., Liu, X., Wu, Z., Zhang,H., Cao, H., 2019. Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic

reticulum stress to facilitate autophagy. Vet. Microbiol. 235, 209–219.

Züst, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Baker, S.C., Barchet, W., Diamond, M.S., Siddell, S.G., Ludewig, B., Thiel, V.,2011. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12,137–143.