Effects of Achatina fulica mucus as antimicrobial additive on chemical compositions, fermentation quality, and in vitro digestibility of elephant grass silage https://doi.org/10.12982/VIS.2024.045

Main Article Content

Qusnul Chotimah
Mutiara Nada
Elina Dwi Rahayu
Dimas Hand Vidya Paradhipta
Hafi Luthfi Sanjaya
Arrynda Rachma Dyasti Wardani
Moh. Sofi'ul Anam

Abstract

This study was purposed to evaluate the utilization of Achatina fulica mucus as an antimicrobial to increase the quality of elephant grass silage. Total of 100 mL of achatina mucus (AM) was isolated from 20 heads of Achatina fulica using electric shock method. The AM contained 3,07 mg/5 mL of total protein. The 45 d old of elephant grass was harvested, wilted, and then chopped at 3-5 cm. Chopped grass was ensiled into 4 kg mini-silo for 21 d with different silage additives in triplicate, consisting of: without additives (P0); with 1% of AM (P1); and with combination of AM and microbial complex inoculant at 1:1 ratio. The compositions of elephant grass silage were not affected by the application of additives. The P2 silage resulted in the lowest (P<0.05) pH and yeast count. Both P1 and P2 silages had higher (P<0.05) lactate concentration than P0. Moreover, clostridia was not detected in both P1 and P2 silages. Both P1 and P2 silages had a higher (P<0.05) in vitro digestibility of dry matter and organic matter than P0 silage. The present study concluded that applying AM was effective to inhibit clostridia and improve fermentation quality and digestibility in the rumen. A combination of AM and MCI was generally recommended to increase the quality and digestibility of elephant grass silage.

Article Details

How to Cite
Chotimah, Q. ., Nada, M., Rahayu, E. D., Hand Vidya Paradhipta, D., Sanjaya, H. L., Wardani, A. R. D., & Anam, M. S. (2023). Effects of Achatina fulica mucus as antimicrobial additive on chemical compositions, fermentation quality, and in vitro digestibility of elephant grass silage: https://doi.org/10.12982/VIS.2024.045. Veterinary Integrative Sciences, 22(2), 667–681. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/265568
Section
Research Articles

References

Alonso, V.A., Pereyra, C.M., Keller, L.A.M., Dalcero, A.M., Rosa, C.A.R., Chiacchiera,S.M., 2013. Fungi and mycotoxins in silage: an overview. J. Appl. Microbiol. 115,637–643.

Association of Official Analytical Chemistry, 2016. Official methods of analysis of AOAC International, 18th edition. AOAC International, Maryland, USA.

Apriyanti, D., Santi, V.L., Siregar, Y.D., 2013. Method assessment for ammonia analysis in water suing salicylate test kit. Ecolab. 7, 49-108.

Barker, S.B., Summerson, W.H., 1941. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 138, 535–554.

Bezerra, H.F.C., Santos, E.M., Oliveira, J.S., Carvalho, G.G.P., Pinho, R.M.A., Silva, T.C.,Pereira, G.A., Cassuce, M.R., Zanine, A.M., 2019. Fermentation characteristics and chemical composition of elephant grass silage with ground maize and fermented

juice of epiphytic lactic acid bacteria. S. Afr. J. Anim. Sci. 49, 522–533.

Bernandes, T.F., Daniel, J.L.P., Adesogan, A.T., McAllister, T.A., Drouin, P., Nussio, L.G.,2018. Silage review: unique challenges of silages made in hot and cold regions. J.Dairy Sci. 101, 4001–4019.

Cherney, D.J.R., Cherney, J.H., Chase, L.E., 2003. Influence of dieatry nonfiber carbohydrate concentration and supplementation of sucrose on lactattion performance of cows fed fescue silage. J. Dairy Sci. 86, 3983-3991.

Costa, L.A., Araujo, M.J.D., Edvan, R.L., Bezzera, L.R., Sousa, A.R.D., Viana, F.J.R., Dias-Silva, T.P., 2020. Chemical composition, fermentative characteristics, and in situ ruminal degradability of elephant grass silage containing Parkia platycephala pod

meal and urea. Trop. Anim. Health. Prod. 52, 3481-3492.

Dolashki, A., Velkova, L., Daskalova, E., Zheleva, N., Topalova, Y., Atanasov, V., Voelter,W., Dolashka, P., 2020. Antimicrobial compunds from the mucus of garden sanil Cornu aspersa. Biomedicines. 8, 1-15.

Ehara, T., Kitajima, S., Kanzawa, N., Tamiya, T., Tsuchiya, T., 2002. Antimicrobial action of achacin is mediated by L-amino acid oxidase activity. FEBS Lett. 531, 509–512.

Hanh, M.T.H., Tham, H.T., 2023. Effect of storage time on the quality of fermented total mixedration (FTMR) from sweet potato by-products. Vet. Integr. Sci. 21, 879-890.

Hobson, P.N., Stewart, C.S., 1997. The rumen microbial ecosystem, 2nd edition. Blackie Academic and Professional, London, pp. 741.

Ito, S., Shimizu, M., Nagatsuka, M., Kitajima, S., Honda, M., Tsuchiya, T., Kanzawa, N.,2011. High molecular weight lectin isolated from the mucus of the Giant African Snail Achatina fulica. Biosci. Biotechnol. Biochem. 75, 20–25.

Jones, C.M., Heinrichs, A.J., Roth, G.W., Ishler, V.A., 2004. From harvest to feed:understanding silage management. Available online: https://extension.psu.edu/fromharvest-to-feed-understanding-silage-management (Accesed on May 16, 2023).

Kung, L., Shaver, R.D., Grant, R.J., Schmidt, R.J., 2018. Silage review: interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101,4020-4033.

Lê, S., Josse, J., Husson, F., 2008. Facto Mine R: an R package for multivariate analysis. J.Stat. Softw. 25, 1–18.

Lee, S.S., Choi, J.S., Paradhipta, D.H.V., Joo, Y.H., Lee, H.J., Noh, H.T., Kim, D.H., Kim,S.C., 2021. Application of selected inoculant producing antifungal and fibrinolytic substances on rye silage with different wilting time. Processes. 9, 1-11.

Lee., S.S., Lee, H.J., Paradhipta, D.H.V., Joo, Y.H., Kim, S.B., Kim, D.H., Kim, S.C., 2019.Temperature and microbial changes of corn silage during aerobic exposure. Asianaustralas.Anim. Sci. J. 32, 988–995.

Lima, M.G., Augusto, R.D.C., Pinheiro, J., Thiengo, S.C., 2020. Physiology and immunity of the invasive giant African snail, Achatina (Lissachatina) fulica, intermediate host of Angiostrongylus cantonensis. Dev. Comp. Immunol. 105, 1–10.

Mæhre, H.K., Dalheim, L., Edvinsen, G.K., Elvevoll, E.O., Jensen, I.J., 2018. Protein determination-method matters. Foods. 7, 1–11.

Mafranenda, D.N., Kriswandini, H.I.L., Arijani, R.E., 2014. Antimicrobial proteins of Snail mucus (Achatina Fulica) against Streptococcus mutans and Aggregatibacter actinomycetemcomitans. Dent. J. 47, 31-36.

McDonald, P., Henderson, A.R., Heron, S.J.E., 1991. The biochemistry of silage. 2nd edition.Chalcombe Publisher, Buckinghamshire, pp. 340.

Muck, R.E., Nadeau, E.M.G., McAllister, T.A., Contreras-Govea, F.E., Santos., M.C., Kung Jr, L., 2018. Silage review: recent advances and future uses of silage additives. J.Dairy Sci. 101, 3980–4000.

Otsuka-Fuchino, H., Watanabe, Y., Hirakawa, C., Tamiya, T., Matsumoto, J.J., Tsuchiya, T.,1992. Bactericidal action of a glycoprotein from the body surface mucus of giant African snail. Comp. Biochem. Physiol. 101C, 607-613.

Paradhipta, D.H.V., Joo, Y.H., Lee, H.J., Lee, S.S., Kim, D.H., Kim, J.D., Kim, S.C., 2019. Effects of inoculant application on fermentation quality and rumen digestibility of high moisture sorghum-sudangrass silage. J. Appl. Anim. Res. 47, 486–491.

Paradhipta, D.H.V., Joo, Y.H., Lee, H.J., Lee, S.S., Noh, H.T., Choi, J.S., Kim, J., Min, H.G.,Kim, S.C., 2021. Effects of inoculants producing antifungal and carboxylesterase activities on corn silage and its shelf life against mold contamination at feed-out

phase. Microorganisms. 9, 1–16.

Paradhipta, D.H.V., Lee, S.S., Kang, B., Joo, Y.H., Lee, H.J., Lee, Y., Kim, J., Kim, S.C., 2020. Dual-purpose inoculants and their effects on corn silage. Microorganisms. 8, 1-18.

Rajabi, R., Tahmasbi, R., Dayani, O., Khezri, A., 2017. Chemical composition of alfalfa silage with waste date and its feeding effect on ruminal fermentation characteristics and microbial protein synthesis in sheep. J. Anim. Physiol. Anim. Nutr. (Berl). 101,466–474.

Sarkar, T., Chetia, M., Chatterjee, S., 2021. Antimicrobial peptides and proteins: from nature’s reservoir to the laboratory and beyond. Front. Chem. 9, 1-40.

Stiles, B.G., Sexton, F.W., Weinstein, S.A., 1991. Antibacterial effects of different snake venoms: purification and characterization of antibacterial proteins from Pseudechis australis (Australian king brown or mulga snake) venom. Toxicon. 29, 1129–1141.

Sucu, E., Kalkan, H., Canbolat, O., Filya, I., 2016. Effects of ensiling density on nutritive value of maize and sorghum silages. Rev. Bras. de Zootec. 45, 596-603.

Tahuk, P.K., Bira, G.F., Taga, H., 2020. Physical characteristics analysis of complete silage made of sorghum forage, king grass and natural grass. IOP Conf. Ser. Earth.Environ. Sci. 465, 012022.

Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms. Nature. 415, 389-395.

Zhong, J., Wang, W., Yang, X., Yan, X., Liu, R., 2013. Peptides a novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides. 39, 1–5.