Unveiling the bacterial microbiota profiles across the gastrointestinal tract regions in dairy buffaloes (Bubalus bubalis) https://doi.org/10.12982/VIS.2024.070

Main Article Content

Phoebe Lyndia T. Llantada
Midori Umekawa
Shuichi Karita

Abstract

Understanding the pivotal role of bacterial communities in the gastrointestinal tract (GIT) of agriculturally significant animals, such as buffalo, on host productivity and health is crucial. However, our knowledge of buffalo GIT bacterial communities remains limited. This study aimed to profile and compare bacterial communities across three distinct GIT regions—forestomach (rumen, reticulum, omasum, abomasum), small intestine (duodenum, jejunum, ileum), and large intestine (cecum, colon, rectum)—in two riverine-type buffaloes using the Illumina MiSeq platform. Fresh samples were collected in triplicate from various GIT sites within two dairy buffaloes reared under identical conditions. Genomic DNA was extracted, and bacterial profiles were analyzed, with sequences annotated using the Green Gene database. The results revealed substantial intra-buffalo variation at lower taxonomic levels, with Bacteroidetes dominating the forestomach and duodenum, while Firmicutes prevailed in the hindgut from the jejunum to the rectum. Comparisons of GIT sites across different buffaloes indicated variations in primary bacterial phyla, with significant taxonomic differences among gut sections in distinct regions but similarities within the same region. This research provides insights into complex microbial communities within the buffalo GIT, contributing to our understanding of buffalo health and productivity.


 


 

Article Details

How to Cite
Phoebe Lyndia T. Llantada, Midori Umekawa, & Shuichi Karita. (2024). Unveiling the bacterial microbiota profiles across the gastrointestinal tract regions in dairy buffaloes (Bubalus bubalis): https://doi.org/10.12982/VIS.2024.070. Veterinary Integrative Sciences, 22(3), 1021053. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/265995
Section
Research Articles

References

Bergmann, G.T., 2017. Microbial community composition along the digestive tract in forageand grain-fed bison. BMC Vet. Res. 13(1), 253.

Cammack, K.M., Austin, K.J., Lamberson, W.R., Conant, G.C., Cunningham, H.C., 2018. Ruminant nutrition symposium: tiny but mighty: the role of the rumen microbes in livestock production. J. Anim. Sci. 96(10), 4481.

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K.,Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T.,Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge,B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A.,Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. Qiime allows analysisof high-throughput community sequencing data. Nat. Methods. 7(5), 335-336.

Cholewińska, P., Górniak, W., Wojnarowski, K., 2021. Impact of selected environmental factors on microbiome of the digestive tract of ruminants. BMC. Vet. Res. 17(1), 1-10.

Costa, M.C., Silva, G., Ramos, R.V., Staempfli, H.R., Arroyo, L.G., Kim, P., Weese,J.S., 2015. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments in horses. Vet J. 205(1), 74-80.

de Menezes, A.B., Lewis, E., O'Donovan, M., O'Neill, B.F., Clipson, N., Doyle, E.M., 2011.Microbiome analysis of dairy cows fed pasture or total mixed ration diets. FEMS Microbiol. Ecol. 78(2), 256-265.

de Oliveira, M.N., Jewell, K.A., Freitas, F.S., Benjamin, L.A., Tótola, M.R., Borges, A.C.,Moraes, C.A., Suen, G., 2013. Characterizing the microbiota across the gastrointestinal tract of a brazilian nelore steer. Vet. Microbiol. 164(3-4), 307-314.

Evans, N.J., Brown, J.M., Murray, R.D., Getty, B., Birtles, R.J., Hart, C.A., Carter, S.D.,2011. Characterization of novel bovine gastrointestinal tract treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol.

(1), 138-147.

Fernando, S.C., Purvis, H.T., 2nd, Najar, F.Z., Sukharnikov, L.O., Krehbiel, C.R., Nagaraja,T.G., Roe, B.A., Desilva, U., 2010. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 76(22), 7482-7490.

Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R., White, B.A., 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat.Rev. Microbiol. 6(2), 121-131.

Godoy-Vitorino, F., Goldfarb, K.C., Karaoz, U., Leal, S., Garcia-Amado, M.A., Hugenholtz, P., Tringe, S.G., Brodie, E.L., Dominguez-Bello, M.G., 2012. Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J. 6(3),

-541.

Ishaq, S.L., Wright, A.D., 2014. High-throughput DNA sequencing of the ruminal bacteria from moose (Alces alces) in Vermont, Alaska, and Norway. Microb. Ecol. 68(2), 185-195.

Ishaq, S.L., Wright, A.D., 2012. Insight into the bacterial gut microbiome of the North American moose (Alces alces). BMC. Microbiol. 12, 212.

Kittelmann, S., Seedorf, H., Walters, W.A., Clemente, J.C., Knight, R., Gordon, J.I., Janssen, P.H., 2013. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE. 8(2), e47879.

Lee, J.E., Lee, S., Sung, J., Ko, G., 2011. Analysis of human and animal fecal microbiota for microbial source tracking. ISME J. 5(2), 362-365.

Lettat, A., Nozière, P., Silberberg, M., Morgavi, D.P., Berger, C., Martin, C., 2012. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep.BMC Microbiol. 12, 142.

Mackie, R.I., Wilkins, C.A., 1988. Enumeration of anaerobic bacterial microflora of the equine gastrointestinal tract. Appl. Environ. Microbiol. 54(9), 2155-2160.

Mao, S., Zhang, M., Liu, J., Zhu, W., 2015. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci. Rep.5, 16116.

Nyonyo, T., Shinkai, T., Mitsumori, M., 2014. Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen. FEMS. Microbiol. Ecol. 88(3), 528-537.

Perea, K., Perz, K., Olivo, S.K., Williams, A., Lachman, M., Ishaq, S.L., Thomson, J.,Yeoman, C.J., 2017. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota. J. Anim. Sci. 95(6), 2585-2592.

Sato, H., Shiogama, Y., 2010. Acetone and isopropanol in ruminal fluid and feces of lactating dairy cows. J. Vet. Med. Sci. 72(3), 297-300.

Spence, C., Wells, W.G., Smith, C.J., 2006. Characterization of the primary starch utilization operon in the obligate anaerobe bacteroides fragilis: regulation by carbon source and oxygen. J. Bacteriol. 188(13), 4663-4672.

Tajima, K., Aminov, R.I., Nagamine, T., Matsui, H., Nakamura, M., Benno, Y., 2001. Dietdependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67(6), 2766-2774.

Xue, M., Sun, H., Wu, X., Guan, L. L., Liu, J., 2018. Assessment of rumen microbiota from a large dairy cattle cohort reveals the pan and core bacteriomes contributing to varied phenotypes. Appl. Environ. Microbiol. 84(19), e00970-18.

Zeng, Y., Zeng, D., Ni, X., Zhu, H., Jian, P., Zhou, Y., Xu, S., Lin, Y., Li, Y., Yin, Z., Pan, K., Jing, B., 2017. Microbial community compositions in the gastrointestinal tract of Chinese Mongolian sheep using Illumina MiSeq sequencing revealed high

microbial diversity. AMB Express. 7(1), 75.

Zhang, J., Xu, C., Huo, D., Hu, Q., Peng, Q., 2017. Comparative study of the gut microbiome potentially related to milk protein in Murrah buffaloes (Bubalus bubalis) and Chinese Holstein cattle. Sci. Rep. 7, 42189.