Current strategies, advances, and challenges in multi-epitope subunit vaccine development for African swine fever virus https://doi.org/10.12982/VIS.2025.011

Main Article Content

Ella Mae Joy S. Sira
Edward C. Banico
Lauren Emily Fajardo
Nyzar Mabeth O. Odchimar
Alea Maurice Simbulan
Fredmoore L. Orosco

Abstract

African Swine Fever (ASF), a highly contagious and lethal viral disease affecting swine populations, presents a critical global threat with no approved vaccine. Traditional approaches such as whole virus-based vaccines have several limitations, prompting interest in peptide-based subunit vaccines. However, the inefficacy of existing peptides and the complexity of the ASFV genome further complicate antigen screening. Immunoinformatics has addressed this challenge by utilizing bioinformatics tools for the design and evaluation of multi-epitope subunit vaccines. Although multi-epitope subunit vaccines offer safety advantages, their potential to induce both humoral and cellular immune responses is crucial for protective immunity against ASFV infection. Despite the growing interest in computational vaccine design, a notable gap exists in in vivo confirmation studies. This review addresses the challenges and advances in ASFV multi-epitope subunit vaccine development, underlining the urgency of a safe and effective vaccine given ASF's global impact on swine populations and associated economic losses.

Article Details

How to Cite
Ella Mae Joy S. Sira, Edward C. Banico, Fajardo, L. E., Nyzar Mabeth O. Odchimar, Simbulan, A. M., & Fredmoore L. Orosco. (2024). Current strategies, advances, and challenges in multi-epitope subunit vaccine development for African swine fever virus: https://doi.org/10.12982/VIS.2025.011. Veterinary Integrative Sciences, 23(1), 1–48. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/266680
Section
Review Article

References

American Association of Swine Veterinarians, 2022. Vietnam first to commercially produce african swine fever vaccine. Available online: https://www.aasv.org/news/story. php?id=14863

Abrams, C.C., Goatley, L., Fishbourne, E., Chapman, D., Cooke, L., Oura, C.A., Dixon, L.K., 2013. Deletion of virulence associated genes from attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus. Virol. 4431, 99–105.

Afonso, C.L., Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C.A., Gibb, T.R., Bean, T.J., Zsak, L., Rock, D.L., 2004. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J. Virol. 78(4), 1858-1864.

Ahmad, B., Ashfaq, U.A., Rahman, M., Masoud, M.S., Yousaf, M., 2019. Conserved B and T cell epitopes prediction of ebola virus glycoprotein for vaccine development: an immuno-informatics approach. Virol. J. 132, 243–253.

Alejo, A., Matamoros, T., Guerra, M., Andrés, G., 2018. A proteomic atlas of the African swine fever virus particle. Virol. J. 9223, 01293–18.

Almagro, J., Salvatore, M., Emanuelsson, O., Winther, O., Heijne, G., Elofsson, A., Nielsen, H., 2019. Detecting sequence signals in targeting peptides using deep learning. Life. Sci. Alliance. 2, e201900429.

Argilaguet, J.M., Pérez-Martín, E., Nofrarías, M., Gallardo, C., Accensi, F., Lacasta, A., Mora, M., Ballester, M., Galindo-Cardiel, I., López-Soria, S., Escribano, J.M., Reche, P.A., Rodríguez, F., 2012. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One. 7, e40942.

Avagyan, H., Hakobyan, S., Poghosyan, A.A., Bayramyan, N., Arzumanyan, H., Abroyan, L., Karalyan, Z., 2022. African swine fever virus manipulates the cell cycle of G0-Infected cells to access cellular nucleotides. Viruses. 148, 1593.

Azarpajouh, S., 2023. Live attenuated ASFV strains: what role can they play?. Available onlin: https://www.pigprogress.net/health-nutrition/health/live-attenuated-asfv-strains-what-role-can-they-play/.

Bahrami, A.A., Payandeh, Z., Khalili, S., Zakeri, A., Bandehpour, M., 2019. Immunoinformatics: in silico approaches and computational design of a multi-epitope, immunogenic protein. Int Rev Immunol. 38(6), 307-322.

Balysheva, V.I., Prudnikova, E.Y., Galnbek, T.V., Balyshev, V.M., 2015. Immunological properties of attenuated variants of African swine fever virus isolated in the Russian Federation. Russ. Agric. Sci. 41, 178–182.

Banjara, S., Caria, S., Dixon, L.K., Hinds, M.G., Kvansakul, M., 2017. Structural Insight into African Swine Fever Virus A179L-Mediated Inhibition of Apoptosis. Virol. J. 91(6), e02228–16.

Barasona, J.A., Gallardo, C., Cadenas-Fernández, E., Jurado, C., Rivera, B., Rodríguez-Bertos, A., Arias, M., Sánchez-Vizcaíno, J.M., 2019. First oral vaccination of eurasian wild boar against African swine fever virus genotype II. Front. Vet. Sci. 6, 137.

Bateman, A., Martin, M.J., Orchard, S., Magrane, M., Ahmad, S., Alpi, E., Insana, G., 2022. UniProt: the universal protein knowledgebase in 2023. Nucleic. Acids. Res. 51(D1), D523–D531.

Berthe, F., 2020. The global economic impact of ASF. Available online: https://bulletin. woah.org/?panorama=02-2-2-2020-1-economic

Bhilare, K.D., Jawalagatti, V., Alam, M.J., Chen, B., Kim, B., Lee, J.H., Kim, J.H., 2023. Immune response following safer administration of recombinant Salmonella Typhimurium harboring ASFV antigens in pigs. Vet. Immunol. Immunopathol. 259, 110596.

Blome, S., Franzke, K., Beer, M., 2020. African swine fever – a review of current knowledge. Virus. Res. 287, 198099.

Blome, S., Gabriel, C., Beer, M., 2014. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine. 32(31), 3879–3882.

Boinas, F.S., Hutchings, G.H., Dixon, L.K., Wilkinson, P.J., 2004. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 85(8), 2177–2187.

Bommeli, W., 1981. Preliminary study on immunization of pigs against African swine fever. In CEC/FAO research seminar, Sassari, Sardinia, Italy.

Borca, M.V., Rai, A., Ramirez-Medina, E., Silva, E., Velazquez-Salinas, L., Vuono, E., Gladue, D.P., 2021. A cell culture-adapted vaccine virus against the current African swine fever virus pandemic strain. Virol. J. 95(14), e0012321.

Borca, M.V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S., Gladue, D.P., 2020. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. Virol. J. 94(7), e02017-19.

Bosch-Camós, L., Alonso, U., Esteve-Codina, A., Chang, C.-Y., Martín-Mur, B., Accensi, F., Muñoz, M., Navas, M.J., Dabad, M., Vidal, E., Pina-Pedrero, S., Pleguezuelos, P., Caratù, G., Salas, M.L., Liu, L., Bataklieva, S., Gavrilov, B., Rodríguez, F., Argilaguet, J., 2022. Cross-protection against African swine fever virus upon intranasal vaccination is associated with an adaptive-innate immune crosstalk. PLoS Pathog. 18, e1010931.

Bosch-Camós, L., López, E., Collado, J., Navas, M.J., Blanco-Fuertes, M., Pina-Pedrero, S., Rodrı́guezF, 2021. M448R and MGF505-7R: two African swine fever virus antigens commonly recognized by ASFV-Specific T-Cells and with protective potential. Vaccines. 95, 508.

Bosch-Camós, L., López, E., Rodriguez, F., 2020. African swine fever vaccines: A promising work still in progress. Porcine. Health. Manag. 6, 17.

Bourry, O., Hutet, E., Le Dimna, M., Lucas, P., Blanchard, Y., Chastagner, A., Paboeuf, F., Le Potier, M.F., 2022. Oronasal or intramuscular immunization with a thermo-attenuated asfv strain provides full clinical protection against Georgia 2007/1 challenge. Viruses. 14(12). 2777.

Brewer, K.D., Weir, G.M., Dude, I., Davis, C., Parsons, C., Penwell, A., Stanford, M.M., 2018. Unique depot formed by an oil based vaccine facilitates active antigen uptake and provides effective tumour control. J. Biomed. Sci. 25, 1–12.

Buchan, D.W.A., Jones, D.T., 2019. The PSIPRED protein analysis workbench: 20 years on. Nucleic. Acids. Res. 47(W1), W402-w407.

Burmakina, G., Malogolovkin, A., Tulman, E.R., Zsak, L., Delhon, G., Diel, D.G., Shobogorov, N.M., Morgunov, Y.P., Morgunov, S.Y., Kutish, G.F., Kolbasov, D., Rock, D.L., 2016. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. J. Gen. Virol. 97, 1670–1675.

Centers for Disease Control and Prevention, 2022. Understanding how vaccines work. C.D.C. Atlanta, GA.

Cackett, G., Portugal, R., Matelska, D., Dixon, L., Werner, F., 2022. African swine fever virus and host response: Transcriptome profiling of the Georgia 2007/1 strain and porcine macrophages. J. Virol. 96(5), e0193921.

Cadenas-Fernández, E., Sánchez-Vizcaíno, J.M., van den Born, E., Kosowska, A., van Kilsdonk, E., Fernández-Pacheco, P., Gallardo, C., Arias, M., Barasona, J.A., 2021. High doses of inactivated African swine fever virus are safe, but do not confer protection against a virulent challenge. Vaccines (Basel). 9(3), 242.

Cadenas-Fernández, E., Sánchez-Vizcaíno, J.M., Kosowska, A., Rivera, B., Mayoral-Alegre, F., Rodríguez-Bertos, A., Barasona, J.A., 2020. Adenovirus-vectored African swine fever virus antigens cocktail is not protective against virulent Arm07 isolate in Eurasian wild boar. Pathogens. 9(3), 171.

Carlson, J., O'Donnell, V., Alfano, M., Velazquez Salinas, L., Holinka, L.G., Krug, P.W., Gladue, D.P., Higgs, S., Borca, M.V., 2016. Association of the host immune response with protection using a live attenuated African swine fever virus model. Viruses. 8(10), 291.

Chambers, A.C., Aksular, M., Graves, L.P., Irons, S.L., Possee, R.D., King, L.A., 2018. Overview of the baculovirus expression system. Curr. Protoc. Protein. Sci. 911, 5–4.

Chambers, M.A., Graham, S.P., Ragione, R.M., 2016. Challenges in veterinary vaccine development and immunization. In: Thomas, S. (Ed.), Vaccine design: methods and protocols, vaccines for veterinary diseases. Humana, New York, pp. 3–35.

Chathuranga, K., Lee, J.S., 2023. African swine fever virus (ASFV): immunity and vaccine development. Vaccines (Basel). 11(2), 199.

Chauhan, V., Rungta, T., Goyal, K., Singh, M.P., 2019. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci. Rep. 9(1), 2517.

Chen, C., Hua, D., Shi, J., Tan, Z., Zhu, M., Tan, K., Huang, J., 2021. Porcine immunoglobulin Fc fused P30/P54 protein of African swine fever virus displaying on surface of S. cerevisiae elicit strong antibody production in swine. Virol. Sin. 36(2), 207–219.

Chen, L., Zhang, X., Shao, G., Shao, Y., Hu, Z., Feng, K., Xie, Q., 2022. Construction and evaluation of recombinant pseudorabies virus expressing African swine fever virus antigen genes. Front. Vet. Sci. 9, 832255.

Chen, W., Zhao, D., He, X., Liu, R., Wang, Z., Zhang, X., Bu, Z., 2020. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China. Life. Sci. 63, 623–634.

Chen, X.L., Wang, J.H., Zhao, W., Shi, C.W., Yang, K.D., Niu, T.M., Wang, C.F., 2021. Lactobacillus plantarum surface-displayed ASFV p54 with porcine IL-21 generally stimulates protective immune responses in mice. AMB Express. 11(1), 114.

Choe, S., Song, S., Piao, D., Park, G.-N., Shin, J., Choi, Y.-J., Kang, S.-K., Cha, R.M., Hyun, B.-H., Park, B.-K., An, D.-J., 2020. Efficacy of orally administered porcine epidemic diarrhea vaccine-loaded hydroxypropyl methylcellulose phthalate microspheres and RANKL-secreting L. lactis. Vet. Microbiol. 242, 108604.

Clifford, J.N., Høie, M.H., Deleuran, S., Peters, B., Nielsen, M., Marcatili, P., 2022. Bepipred-3.0: Improved b-cell epitope prediction using protein language models. Protein. Sci. 31(12), e4497.

Colovos, C., Yeates, T.O., 1993. Verification of protein structures: patterns of nonbonded atomic interactions. Protein. Sci. 2(9), 1511-1519.

Correia, S., Moura, P.L., Ventura, S., Leitão, A., Parkhouse, R.M.E., 2023. I329L: A dual action viral antagonist of TLR activation encoded by the African swine fever virus ASFV. Viruses. 15(2), 445.

Correia, S., Ventura, S., Parkhouse, R.M., 2013. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus. Res. 173(1), 87–100.

Craig, D.B., Dombkowski, A.A., 2013. Disulfide by design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinformatics. 14, 346.

Cubillos, C., Gómez-Sebastian, S., Moreno, N., Nuñez, M.C., Mulumba-Mfumu, L.K., Quembo, C.J., Blanco, E., 2013. African swine fever virus serodiagnosis: a general review with a focus on the analyses of African serum samples. Virus. Res. 173(1), 159–167.

Cuesta-Geijo, M.Á., García-Dorival, I., Puerto, A., Urquiza, J., Galindo, I., Barrado-Gil, L., Lasala, F., Cayuela, A., Sorzano, C.O.S., Gil, C., Delgado, R., Alonso, C., 2022. New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathog. 18(1), e1009784.

Deléage, G., 2017. ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments. Bioinform. 33(24), 3991–3992.

Deng, L., Gu, S., Huang, Y., Wang, Y., Zhao, J., Nie, M., Zhu, L., 2023. Immunogenic response of recombinant pseudorabies virus carrying B646L and B602L genes of African swine fever virus in mice. Vet. Microbiol. 284, 109815.

Detray, D.E., 1963. African swine fever. Adv. Vet. Sci. 8, 299–333.

Deutschmann, P., Carrau, T., Sehl-Ewert, J., Forth, J.H., Viaplana, E., Mancera, J.C., Urniza, A., Beer, M., Blome, S., 2022. Taking a promising vaccine candidate further: Efficacy of ASFV-g-δmgf after intramuscular vaccination of domestic pigs and oral vaccination of wild boar. Pathogens. 11(9), 996.

Diethelm-Okita, B.M., Okita, D.K., Banaszak, L., Conti-Fine, B.M., 2000. Universal epitopes for human CD4+ cells on tetanus and diphtheria toxins. J. Infect. Dis. 181(3), 1001–1009.

Díez-Rivero, C.M., Reche, P., 2009. Discovery of conserved epitopes through sequence variability analyses. In: Flower, D.D.R., Davies, M., Ranganathan, S. (Eds.), Bioinformatics for immunomics. Springer New York, New York, NY, pp. 95-101.

Divangahi, M., Aaby, P., Khader, S.A., Barreiro, L.B., Bekkering, S., Chavakis, T., van Crevel, R., Curtis, N., DiNardo, A.R., Dominguez-Andres, J., Duivenvoorden, R., Fanucchi, S., Fayad, Z., Fuchs, E., Hamon, M., Jeffrey, K.L., Khan, N., Joosten, L.A.B., Kaufmann, E., Latz, E., Matarese, G., van der Meer, J.W.M., Mhlanga, M., Moorlag, S., Mulder, W.J.M., Naik, S., Novakovic, B., O'Neill, L., Ochando, J., Ozato, K., Riksen, N.P., Sauerwein, R., Sherwood, E.R., Schlitzer, A., Schultze, J.L., Sieweke, M.H., Benn, C.S., Stunnenberg, H., Sun, J., van de Veerdonk, F.L., Weis, S., Williams, D.L., Xavier, R., Netea, M.G., 2021. Trained immunity, tolerance, priming and differentiation: Distinct immunological processes. Nat. Immunol. 22(1), 2-6.

Dixon, L.K., Sun, H., Roberts, H., 2019. African swine fever. Antiviral. Res. 165, 34–41.

Dodantenna, N., Ranathunga, L., Chathuranga, W.A.G., Weerawardhana, A., Cha, J.W., Subasinghe, A., Gamage, N., Haluwana, D.K., Kim, Y., Jheong, W., Poo, H., Lee, J.S., 2022. African swine fever virus ep364r and c129r target cyclic gmp-amp to inhibit the cgas-sting signaling pathway. J. Virol. 96(15), e0102222.

Dolata, K.M., Pei, G., Netherton, C.L., Karger, A., 2023. Functional landscape of African swine fever virus–host and virus–virus protein interactions. Viruses. 15(8), 1634.

Dolata, K.M., Fuchs, W., Caignard, G., Dupré, J., Pannhorst, K., Blome, S., Mettenleiter, T.C., Karger, A., 2023. Cp204l is a multifunctional protein of African swine fever virus that interacts with the VPS39 subunit of the homotypic fusion and vacuole protein sorting complex and promotes lysosome clustering. J. Virol. 97(2), e0194322.

Doytchinova, I.A., Flower, D.R., 2008. Bioinformatic Approach for Identifying Parasite and Fungal Candidate Subunit Vaccines. Open. Vaccine. J. 1(1), 22–26.

Duan, X., Ru, Y., Yang, W., Ren, J., Hao, R., Qin, X., Zheng, H., 2022. Research progress on the proteins involved in African swine fever virus infection and replication. Front. immunol. 13, 947180.

Dudek, T., Knipe, D.M., 2006. Replication-defective viruses as vaccines and vaccine vectors. Virology. 344(1), 230–239.

Edgar, R.C., 2021. High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Available online: https://www.biorxiv.org/content /10.1101/2021.06.20.449169v2.full.pdf.

Eustace Montgomery, R., 1921. On a form of swine fever occurring in British East Africa (Kenya colony). J. Comp. Pathol. Ther. 34, 159-191.

Fang, N., Yang, B., Xu, T., Li, Y., Li, H., Zheng, H., Chen, R., 2022. Expression and immunogenicity of recombinant African swine fever virus proteins using the Semliki Forest virus. Front. Vet. Sci. 9, 870009.

Feng, Z., Chen, J., Liang, W., Chen, W., Li, Z., Chen, Q., Cai, S., 2020. The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice. Virol. J. 17(1), 1–17.

Forman, A.J., Wardley, R.C., Wilkinson, P.J., 1982. The immunological response of pigs and guinea pigs to antigens of African swine fever virus. Arch. Virol. 74, 91–100.

Forth, J.H., Calvelage, S., Fischer, M., Hellert, J., Sehl-Ewert, J., Roszyk, H., Deutschmann, P., Reichold, A., Lange, M., Thulke, H.H., Sauter-Louis, C., Höper, D., Mandyhra, S., Sapachova, M., Beer, M., Blome, S., 2023. African swine fever virus - variants on the rise. Emerg. Microbes. Infect. 12(1), 2146537.

Gallardo, C., Sánchez, E.G., Pérez-Núñez, D., Nogal, M., León, P., Carrascosa, Á.L., Revilla, Y., 2018. African swine fever virus ASFV protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine. 36(19), 2694–2704.

Gallardo, C., Soler, A., Nieto, R., Sánchez, M.A., Martins, C., Pelayo, V., Arias, M., 2015. Experimental transmission of African swine fever ASF low virulent isolate NH/P68 by surviving pigs. Transbound. Emerg. Dis. 62(6), 612–622.

Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gómez, C., Fernandez-Pinero, J., Arias, M., 2019. Attenuated and non-haemadsorbing (non-HAD) genotype ii African swine fever virus (asfv) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 66(3), 1399-1404.

García-Machorro, J., Ramírez-Salinas, G.L., Martinez-Archundia, M., Correa-Basurto, J., 2022. The advantage of using immunoinformatic tools on vaccine design and development for coronavirus. Vaccines (Basel). 10(11), 1844.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A., 2005. Protein identification and analysis tools on the ExPASy server. In: Walker, J.M. (Ed.), The proteomics protocols handbook. Humana Press, Totowa, NJ, pp. 571–607.

Gaudreault, N.N., Madden, D.W., Wilson, W.C., Trujillo, J.D., Richt, J.A., 2020. African swine fever virus: an emerging DNA arbovirus. Front. Vet. Sci. 7, 215.

Gaudreault, N.N., Richt, J.A., 2019. Subunit vaccine approaches for African swine fever virus. Vaccines 7(2), 56.

Geourjon, C., Deléage, G., 1995. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 11(6), 681-684.

Gladue, D.P., Borca, M.V., 2022. Recombinant ASF live attenuated virus strains as experimental vaccine candidates. Viruses. 14(5), 878.

Gó Mez-Puertas, P., Rodríguez, F., Oviedo, J., Ramiro-Ibá, F., Ez, Ñ., Ruiz-Gonzalvo, F., Escribano, J., 1996. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. Virol. J. 70(8), 5689–5694.

Goatley, L.C., Reis, A.L., Portugal, R., Goldswain, H., Shimmon, G.L., Hargreaves, Z., Netherton, C.L., 2020. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines. 8(2), 234.

Gómez-Puertas, P., Rodríguez, F., Oviedo, J.M., Brun, A., Alonso, C., Escribano, J.M., 1998. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology. 243(2), 461–471.

Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D.C., Jahn, D., 2005. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 33, W526–W531.

Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G.P.S., 2013. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE. 8(9), e73957.

Gutiérrez, A.H., Martin, W.D., Bailey-Kellogg, C., Terry, F., Moise, L., De Groot, A.S., 2015. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method. BMC Bioinformatics. 16, 290.

Herrera, L.R.D.M., Bisa, E.P., 2021. In silico analysis of highly conserved cytotoxic T-cell epitopes in the structural proteins of African swine fever virus. Vet. World. 14(10), 2625–2633.

Hewings-Martin, Y., 2021. COVID-19: How do subunit vaccines work?. Available online: https://www.medicalnewstoday.com/articles/covid-19-how-do-subunit-vaccines-work.

Honorato, R.V., Koukos, P.I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Bonvin, A.M.J.J., 2021. Structural biology in the clouds: the WeNMR-EOSC ecosystem. Front. Mol. Biosci. 8, 729513.

Hospital, A., Andrio, P., Fenollosa, C., Cicin-Sain, D., Orozco, M., Gelpí, J.L., 2012. MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations. Bioinform. 28(9), 1278–1279.

Hua, R.H., Liu, J., Zhang, S.J., Liu, R.Q., Zhang, X.F., He, X.J., Bu, Z.G., 2023. Mammalian cell-line-expressed CD2v protein of African swine fever virus provides partial protection against the HLJ/18 strain in the early infection stage. Viruses. 15(7), 1467.

Huang, M., Zheng, H., Tan, W., Xiang, C., Fang, N., Xie, W., Chen, R., 2023. Molecular signatures in swine innate and adaptive immune responses to African swine fever virus antigens p30/p54/CD2v expressed using a highly efficient Semliki Forest virus replicon system. Int. J. Mol. Sci. 24(11), 9316.

Huang, Q., Niu, T., Zou, B., Wang, J., Xin, J., Niu, H., Wang, C., 2022. Lactobacillus plantarum surface-displayed ASFV p14. 5 can stimulate immune responses in mice. Vaccines. 10(3), 355.

Huo, J., Zhang, A., Wang, S., Cheng, H., Fan, D., Huang, R., He, H., 2022. Splenic-targeting biomimetic nanovaccine for elevating protective immunity against virus infection. J. Nanobiotechnology. 20(1), 514.

Hurtado, C., Bustos, M.J., Granja, A.G., León, P., Sabina, P., López-Viñas, E., Gómez-Puertas, P., Revilla, Y., Carrascosa, A.L., 2011. The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens. Arch. Virol. 156(2), 219–234.

Hurtado, C., Granja, A.G., Bustos, M.J., Nogal, M.L., Buitrago, G., Yébenes, V.G., Salas, M.L., Revilla, Y., Carrascosa, A.L., 2004. The C-type lectin homologue gene EP153R of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology. 326(1), 160–170.

Imatdinov, A.R., Kazakova, A.S., Šekler, M., Morozova, D.Y., Lyska, V.M., Titov, I.A., Sevskikh, T., Sereda, A.D., 2020. Immunization of pigs with recombinant plasmids containing genes of ubiquitinated p30, p54 and CD2v proteins of African swine fever virus. Acta. Vet. 70(1), 92–109.

Jancovich, J.K., Chapman, D., Hansen, D.T., Robida, M.D., Loskutov, A., Craciunescu, F., Dixon, L.K., 2018. Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. Virol. J. 92(8), e02219-17.

Jia, N., Ou, Y., Pejsak, Z., Zhang, Y., Zhang, J., 2017. Roles of African swine fever virus structural proteins in viral infection. J. Vet. Res. 61(2), 135–143.

Kanampalliwar, A.M., 2020. Reverse vaccinology and its applications. Methods. Mol. Biol. 2131, 1–16.

Karosiene, E., Lundegaard, C., Lund, O., Nielsen, M., 2011. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 64(3), 177–186.

Kaur, H., Garg, A., Raghava, G.P., 2007. Pepstr: A de novo method for tertiary structure prediction of small bioactive peptides. Protein. Pept. Lett. 14(7), 626-631.

Khalid, K., Poh, C.L., 2023. The promising potential of reverse vaccinology-based next-generation vaccine development over conventional vaccines against antibiotic-resistant bacteria. Vaccines. 11(7), 1264.

Khan, K.H., 2013. Gene expression in mammalian cells and its applications. Adv. Pharm. Bull. 3(2), 257.

Kihm, U., Ackermann, M., Mueller, H., Pool, R., 1987. Approaches to vaccination. In: Becker, Y. (Ed.), African swine fever. Springer, New York, pp. 127–144.

King, K., Chapman, D., Argilaguet, J.M., Fishbourne, E., Hutet, E., Cariolet, R., Takamatsu, H.H., 2011. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine. 29(28), 4593–4600.

Kollnberger, S.D., Gutierrez-Castañeda, B., Foster-Cuevas, M., Corteyn, A., Parkhouse, R.M.E., 2002. Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. J. Gen. Virol. 83, 1331–1342.

Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S., 2017. The ClusPro web server for protein-protein docking. Nat. Protoc. Feb. 12(2), 255-278.

Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L., 2001. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305(3), 567-580.

Krug, P.W., Holinka, L.G., O’Donnell, V., Reese, B., Sanford, B., Fernandez-Sainz, I., Borca, M.V., 2015. The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. Virol. J. 89(4), 2324–2332.

Lai, D.C., Le, H.N.T., Nga, B.T.T., Do, D.T., 2022. Facing the challenges of endemic African awine fever in Vietnam. Available online: https://www.cabidigitallibrary.org/doi/abs/ 10.1079/cabireviews202217037.

Lee, H., Heo, L., Lee, M.S., Seok, C., 2015. GalaxyPepDock: a protein-peptide docking tool based on interaction similarity. Nucleic. Acids. Res. 43, W431– W435.

Leitão, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M.E., Portugal, F.C., Martins, C.L., 2001. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J. Gen. Virol. 82, 513–523.

Lewis, T., Zsak, L., Burrage, T.G., Lu, Z., Kutish, G.F., Neilan, J.G., Rock, D.L., 2000. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. Virol. J. 74(3), 1275–1285.

Li, J., Jiao, J., Liu, N., Ren, S., Zeng, H., Peng, J., Zhang, Y., Guo, L., Liu, F., Lv, T., Chen, Z., Sun, W., Hrabchenko, N., Yu, J., Wu, J., 2023. Novel p22 and p30 dual-proteins combination based indirect elisa for detecting antibodies against African swine fever virus. Front Vet Sci. 10, 1093440.

Li, L., Qiao, S., Wang, S., Liu, J., Zhao, K., Zhou, Y., Gao, F., 2023. Expression of ASFV p17 in CHO cells and identification of one novel epitope using a monoclonal antibody. Virus. Res. 336, 199194.

Li, T., Zhao, G., Zhang, T., Zhang, Z., Chen, X., Song, J., Wang, X., Li, J., Huang, L., Wen, L., Li, C., Zhao, D., He, X., Bu, Z., Zheng, J., Weng, C., 2021. African swine fever virus pE199L induces mitochondrial-dependent apoptosis. Viruses. 13(11), 2240.

Li, Y., Sun, R., Li, S., Tan, Z., Li, Z., Liu, Y., Huang, J., 2023. ASFV proteins presented at the surface of T7 phages induce strong antibody responses in mice. J. Virol. Methods. 316, 114725.

Li, Z., Chen, W., Qiu, Z., Li, Y., Fan, J., Wu, K., Li, X., Zhao, M., Ding, H., Fan, S., Chen, J., 2022. African swine fever Virus: a review. Life (Basel). 12(8), 1255.

Liberti, R., Colabella, C., Anzalone, L., Severi, G., Di Paolo, A., Casciari, C., Casano, A.B., Giammarioli, M., Cagiola, M., Feliziani, F., De Giuseppe, A., 2023. Expression of a recombinant ASFV P30 protein and production of monoclonal antibodies. Open. Vet. J. 13, 358–364.

Life Technologies Corporation, 2012. BaculoDirectTM baculovirus expression system: For cloning and high-level expression of recombinant proteins using Gateway®-adapted baculovirus DNA. Available online: https://www.researchgate.net/profile/Karen-Darbinyan/post/May_anyone_suggest_me_a_protocol_for_the_expression_of_an_intracellular_protein_using_baculovirus_please/attachment/5c4dc36b3843b0544e629ea9/AS%3A719695435005957%401548600171224/download/baculodirect_man.pdf.

Linding, R., 2003. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic. Acids. Res. 31(13), 3701–3708.

Liu, L., Wang, X., Mao, R., Zhou, Y., Yin, J., Sun, Y., Yin, X., 2021. Research progress on live attenuated vaccine against African swine fever virus. Microb. Pathog. 158, 105024.

Liu, Q., Ma, B., Qian, N., Zhang, F., Tan, X., Lei, J., Xiang, Y., 2019. Structure of the African swine fever virus major capsid protein p72. Cell. Res. 29(11), 953–955.

Liu, W., Li, H., Liu, B., Lv, T., Yang, C., Chen, S., Feng, L., Lai, L., Duan, Z., Chen, X., Li, P., Guan, S., Chen, L., 2023. A new vaccination regimen using adenovirus-vectored vaccine confers effective protection against African swine fever virus in swine. Emerg. Microbes. Infect. 12(2), 2233643.

Lokhandwala, S., Petrovan, V., Popescu, L., Sangewar, N., Elijah, C., Stoian, A., Mwangi, W., 2019. Adenovirus-vectored African swine fever virus antigen cocktails are immunogenic but not protective against intranasal challenge with Georgia 2007/1 isolate. Vet. Microbiol. 235, 10–20.

Lokhandwala, S., Waghela, S.D., Bray, J., Martin, C.L., Sangewar, N., Charendoff, C., Shetti, R., Ashley, C., Chen, C.H., Berghman, L.R., Mwangi, D., Dominowski, P.J., Foss, D.L., Rai, S., Vora, S., Gabbert, L., Burrage, T.G., Brake, D., Neilan, J., Mwangi, W., 2016. Induction of robust immune responses in swine by using a cocktail of adenovirus-vectored African swine fever virus antigens. Clin. Vaccine. Immunol. 23(11), 888-900.

Lokhandwala, S., Waghela, S.D., Bray, J., Sangewar, N., Charendoff, C., Martin, C.L., Hassan, W.S., Koynarski, T., Gabbert, L., Burrage, T.G., Brake, D., Neilan, J., Mwangi, W., 2017. Adenovirus-vectored novel African swine fever virus antigens elicit robust immune responses in swine. PLoS One. 12(5), e0177007.

Lopera-Madrid, J., Medina-Magües, L.G., Gladue, D.P., Borca, M.V., Osorio, J.E., 2021. Optimization in the expression of ASFV proteins for the development of subunit vaccines using poxviruses as delivery vectors. Sci. Rep. 11(1), 23476.

Lopera-Madrid, J., Osorio, J.E., He, Y., Xiang, Z., Adams, L.G., Laughlin, R.C., Mwangi, W., Subramanya, S., Neilan, J., Brake, D., Burrage, T.G., Brown, W.C., Clavijo, A., Bounpheng, M.A., 2017. Safety and immunogenicity of mammalian cell derived and modified vaccinia Ankara vectored African swine fever subunit antigens in swine. Vet Immunol Immunopathol. 185, 20-33.

Lopez, E., van Heerden, J., Bosch-Camós, L., Accensi, F., Navas, M.J., López-Monteagudo, P., Argilaguet, J., Gallardo, C., Pina-Pedrero, S., Salas, M.L., Salt, J., Rodriguez, F., 2020. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in cross-protection. Viruses. 12(12), 1474.

Lopez, S.M., Sato, A.I., Chatterjee, A., 2023. Vaccines: an overview. Elsevier, Amsterdam.

López-Blanco, J.R., Aliaga, J.I., Quintana-Ortí, E.S., Chacón, P., 2014. iMODS: internal coordinates normal mode analysis server. Nucleic. Acids. Res. 42, W271–W276.

Lu, H., Zhou, X., Wu, Z., Zhang, X., Zhu, L., Guo, X., Sun, H., 2021. Comparison of the mucosal adjuvanticities of two Toll-like receptor ligands for recombinant adenovirus-delivered African swine fever virus fusion antigens. Vet. Immunol. Immunopathol. 239, 110307.

Lu, W., Bai, Y., Zhang, S., Zhao, X., Jin, J., Zhu, X., Wang, R., Wu, Y., Zhang, A., Zhang, G., Zhuang, G., Sun, A., 2023. An intracellular Epitope of ASFV CD2v protein elicits humoral and cellular immune responses. Animals (Basel). 13(12), 1967.

Luong, H.Q., Lai, H.T.L., Truong, L.Q., Nguyen, T.N., Vu, H.D., Nguyen, H.T., Nguyen, L.T., Pham, T.H., McVey, D.S., Vu, H.L.X., 2023. Comparative analysis of swine antibody responses following vaccination with live-attenuated and killed African swine fever virus vaccines. Vaccines (Basel). 11(11), 1687.

Ma, Y., Lee, C.J., Park, J.S., 2020. Strategies for optimizing the production of proteins and peptides with multiple disulfide bonds. Antibiotics. 9(9), 541.

Magnan, C.N., Randall, A., Baldi, P., 2009. SOLpro: accurate sequence-based prediction of protein solubility. Bioinform. 25(17), 2200–2207.

Manso-Ribeiro, J., Nunes-Petisca, J.L., Lopez-Frazao, F., Sobral, M., 1963. Vaccination against ASF. Bull. Off. Int. Epizoot. 60, 921–937.

Martinelli, D.D., 2022. In silico vaccine design: A tutorial in immunoinformatics. Healthcare. Anal. 2, 100044.

Matamoros, T., Alejo, A., Rodríguez, J.M., Hernáez, B., Guerra, M., Fraile-Ramos, A., Andrés, G., 2020. African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration. mBio. 11(4), e00789-20.

Mebus, C.A., 1988. African swine fever. Adv. Virus. Res. 35, 251–269.

Meng, K., Zhang, Y., Liu, Q., Huyan, Y., Zhu, W., Xiang, Y., Meng, G., 2022. Structural design and assessing of recombinantly expressed African swine fever virus p72 trimer in Saccharomyces cerevisiae. Front. Microbiol. 13, 802098.

Miao, C., Yang, S., Shao, J., Zhou, G., Ma, Y., Wen, S., Chang, H., 2023. Identification of p72 epitopes of African swine fever virus and preliminary application. Front. Microbiol. 14, 1126794.

Moise, L., Gutiérrez, A.H., Khan, S., Tan, S., Ardito, M., Martin, W.D., De Groot, A.S., 2020. New immunoinformatics tools for swine: designing epitope-driven vaccines, predicting vaccine efficacy, and making vaccines on demand. Front. Immunol. 11, 563362.

Monteagudo, P.L., Lacasta, A., López, E., Bosch, L., Collado, J., Pina-Pedrero, S., Correa-Fiz, F., Accensi, F., Navas, M.J., Vidal, E., Bustos, M.J., Rodríguez, J.M., Gallei, A., Nikolin, V., Salas, M.L., Rodríguez, F., 2017. BA71ΔCD2: A new recombinant live attenuated African swine fever virus with cross-protective capabilities. Virol. J. 91(21), 01058–17.

Muhammad, Z.S., Muneer, I., Ashfaq, U.A., Javed, H., Anwar, F., Saari, N., 2020. Multiepitope-based subunit vaccine design and evaluation against respiratory syncytial virus using reverse vaccinology approach. Vaccines. 82, 288–288.

Mulumba-Mfumu, L.K., Goatley, L.C., Saegerman, C., Takamatsu, H.H., Dixon, L.K., 2016. Immunization of African indigenous pigs with attenuated genotype I African swine fever virus OURT 88/3 induces protection against challenge with virulent strains of genotype I. Transbound. Emerg. Dis. 63(5), e323-e327.

Murgia, M.V., Mogler, M., Certoma, A., Green, D., Monaghan, P., Williams, D.T., Gaudreault, N.N., 2019. Evaluation of an African swine fever ASF vaccine strategy incorporating priming with an alphavirus-expressed antigen followed by boosting with attenuated ASF virus. Arch. Virol. 164(2), 359–370.

Nagpal, G., Chaudhary, K., Agrawal, P., Raghava, G.P.S., 2018. Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants. J. Transl. Med.16(1), 181.

NCBI Resource Coordinators, 2016. Database resources of the national center for biotechnology information. Nucleic. Acids. Res. 44(D1), D7-D19.

Neilan, J.G., Borca, M.V., Lu, Z., Kutish, G.F., Kleiboeker, S.B., Carrillo, C., Zsak, L., Rock, D.L., 1999. An African swine fever virus ORF with similarity to C-type lectins is non-essential for growth in swine macrophages in vitro and for virus virulence in domestic swine. J. Gen. Virol. 80, 2693–2697.

Neilan, J.G., Zsak, L., Lu, Z., Burrage, T.G., Kutish, G.F., Rock, D.L., 2004. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology. 319, 337–342.

Netherton, C.L., Goatley, L.C., Reis, A.L., Portugal, R., Nash, R.H., Morgan, S.B., Gault, L., Nieto, R., Norlin, V., Gallardo, C., Ho, C.-S., Sánchez-Cordón, P.J., Taylor, G., Dixon, L.K., 2019. Identification and immunogenicity of African swine fever virus antigens. Front. Immunol. 10, 1318.

Netherton, C.L., Rouiller, I., Wileman, T., 2004. The subcellular distribution of multigene family 110 proteins of African swine fever virus is determined by differences in C-terminal KDEL endoplasmic reticulum retention motifs. Virol. J. 78(7), 3710–3721.

Nielsen, M., Lundegaard, C., Lund, O., Keşmir, C., 2005. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics. 57, 33–41.

Nilvebrant, J., Rockberg, J., 2018. An Introduction to Epitope Mapping. In: Rockberg, J., Nilvebrant, J. (Eds.), Epitope Mapping Protocols. Springer, New York, pp. 1–10.

Niu, B., Fu, L., Sun, S., Li, W., 2010. Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics. 11, 187.

Niu, S., Guo, Y., Wang, X., Wang, Z., Sun, L., Dai, H., Peng, G., 2023. Innate immune escape and adaptive immune evasion of African swine fever virus: a review. Virology. 587, 109878.

Njau, E.P., Machuka, E.M., Cleaveland, S., Shirima, G.M., Kusiluka, L.J., Okoth, E.A., Pelle, R., 2021. African swine fever virus (ASFV): biology, genomics and genotypes circulating in sub-saharan Africa. Viruses. 13(11), 2285.

Nogal, M.L., Buitrago, G., Rodríguez, C., Cubelos, B., Carrascosa, A.L., Salas, M.L., Revilla, Y., 2001. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. Virol. J. 75(6), 2535–2543.

O’Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G.R., Borca, M.V., 2015a. African swine fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. Virol. J. 89(11), 6048–6056.

O’Donnell, V., Holinka, L.G., Krug, P.W., Gladue, D.P., Carlson, J., Sanford, B., Borca, M.V., 2015b. African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL B119L, when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. Virol. J. 89(16), 8556–8566.

Ols, S., Yang, L., Thompson, E.A., Pushparaj, P., Tran, K., Liang, F., Lin, A., Eriksson, B., Karlsson Hedestam, G.B., Wyatt, R.T., Loré, K., 2020. Route of vaccine administration alters antigen trafficking but not innate or adaptive immunity. Cell. Rep. 30(12), 3964-3971.

Opriessnig, T., Mattei, A.A., Karuppannan, A.K., Halbur, P.G., 2021. Future perspectives on swine viral vaccines: where are we headed? Porc. Health. Manag. 7(1), 1–16.

Orosco, F.L., 2023a. Host immune responses against African swine fever virus: insights and challenges for vaccine development. Open. Vet. J. 13(12), 1517-1535.

Orosco, F.L., 2023b. Current progress in diagnostics, therapeutics, and vaccines for African swine fever virus. Vet. Integr. Sci. 21(3), 751–781.

Orosco, F., 2024. Recent advances in peptide-based nanovaccines for re-emerging and emerging infectious diseases. J. Adv. Biotechnol. Exp. Ther. 7, 106-117.

Orosco, F.L., Espiritu, L.M., 2024. Navigating the landscape of adjuvants for subunit vaccines: recent advances and future perspectives. Int. J. Appl. Pharm. 16(1), 18-32.

Oura, C.A., Denyer, M.S., Takamatsu, H., Parkhouse, R.M.E., 2005. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol. 86, 2445–2450.

Peng-hao, L., 2020. Soluble expression and enzyme activity analysis of African swine fever virus K196R and A240L proteins. Biotechnol. Bull. 36(11), 70-75.

Pérez-Núñez, D., Sunwoo, S.-Y., Sánchez, E.G., Haley, N., García-Belmonte, R., Nogal, M., Morozov, I., Madden, D., Gaudreault, N.N., Mur, L., Shivanna, V., Richt, J.A., Revilla, Y., 2019. Evaluation of a viral DNA-protein immunization strategy against African swine fever in domestic pigs. Vet. Immunol. Immunopathol. 208, 34–43.

Petrovan, V., Rathakrishnan, A., Islam, M., Goatley, L.C., Moffat, K., Sánchez-Cordón, P.J., Dixon, L.K., 2022. Role of African swine fever Virus Proteins EP153R and EP402R in Reducing Viral Persistence in Blood and Virulence in Pigs Infected with BeninΔDP148R. Virol. J. 96(1), e013402.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., Ferrin, T.E., 2021. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein. Sci. 30, 70–82.

Pierleoni, A., Martelli, P.L., Casadio, R., 2008. PredGPI: a GPI-anchor predictor. BMC Bioinform. 9, 392.

Pierre, T., 2015. PEP-FOLD peptide structure prediction server. Available online: https://bio serv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD/

Pikalo, J., Porfiri, L., Akimkin, V., Roszyk, H., Pannhorst, K., Kangethe, R.T., Blome, S., 2022. Vaccination with a gamma irradiation-inactivated African swine fever virus is safe but does not protect against a challenge. Front. immunol. 13, 832264.

Ramirez-Medina, E., Vuono, E., Rai, A., Pruitt, S., Espinoza, N., Velazquez-Salinas, L., Gladue, D.P., 2022. Deletion of E184L, a putative DIVA target from the pandemic strain of African swine fever virus, produces a reduction in virulence and protection against virulent challenge. Virol. J. 96(1), e0141921.

Rapin, N., Lund, O., Bernaschi, M., Castiglione, F., 2010. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS. One. 5(4), e9862.

Rathakrishnan, A., Reis, A.L., Goatley, L.C., Moffat, K., Dixon, L.K., 2021. Deletion of the K145R and DP148R genes from the virulent ASFV Georgia 2007/1 isolate delays the onset, but does not reduce severity, of clinical signs in infected pigs. Viruses. 13(8), 1473.

Redrejo-Rodríguez, M., Garcı́a-Escudero, R., Yáñez‐Muñoz, R.J., Salas, M., Salas, J.V., 2006. African swine fever virus protein pE296R is a DNA repair apurinic/apyrimidinic endonuclease required for virus growth in swine macrophages. Virol. J. 8010, 4847–4857.

Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sanchez-Cordon, P., Dixon, L.K., 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine. 3439, 4698–4705.

Reis, A.L., Goatley, L.C., Jabbar, T., Lopez, E., Rathakrishnan, A., Dixon, L.K., 2020. Deletion of the gene for the type I interferon inhibitor I329L from the attenuated African swine fever virus OURT88/3 strain reduces protection induced in pigs. Vaccines. 82, 262.

Reis, A.L., Goatley, L.C., Jabbar, T., Sanchez-Cordon, P.J., Netherton, C.L., Chapman, D.A., Dixon, L.K., 2017. Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. Virol. J. 9124, 10–1128.

Reynisson, B., Alvarez, B., Paul, S., Peters, B., Nielsen, M., 2020. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic. Acids. Res. 48, 449–454.

Rezvantalab, S., Drude, N.I., Moraveji, M.K., Güvener, N., Koons, E.K., Shi, Y., Kiessling, F., 2018. PLGA-based nanoparticles in cancer treatment. 9, 1260.

Ricote, L.Y., 2017. African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA-dependent RNA polymerases. Nucleic. Acids. Res. 2110, 2423–2427.

Rock, D.L., 2017. Challenges for African swine fever vaccine development—“… perhaps the end of the beginning”. Vet Microbiol. 206, 52-58.

Ros-Lucas, A., Correa‐Fiz, F., Bosch-Camós, L., Rodrı́guezF., Alonso-Padilla, J., 2020. Computational analysis of African swine fever virus protein space for the design of an epitope-based vaccine ensemble. Pathogens. 9(12), 1078.

Rowaiye, A.B., Oli, A.N., Asala, M.T., Nwonu, E.J., Njoku, M.O., Asala, O.O., Mbachu, N.A., 2023. Design of multiepitope vaccine candidate from a major capsid protein of the African swine fever virus. Vet. Vaccine. 2(1), 100013.

Ruiz-Gonzalvo, F., Rodríguez, F., Escribano, J.M., 1996. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology. 218(1), 285–289.

Saha, S., Raghava, G.P., 2006. Prediction of continuous b-cell epitopes in an antigen using recurrent neural network. Proteins. 65(1), 40-48.

Sajid, M., Marriam, S., Mukhtar, H., Sohail, S., Sajid, M., Sehgal, S.A., 2022. Epitope-based peptide vaccine design and elucidation of novel compounds against 3C like protein of SARS-CoV-2. PLoS. One. 17(3), e0264700.

Salman, M., Lin, H., Suntisukwattana, R., Watcharavongtip, P., Jermsutjarit, P., Tantituvanont, A., Nilubol, D., 2023. Intradermal needle-free injection prevents African Swine Fever transmission, while intramuscular needle injection does not. Sci. Rep. 13(1), 4600.

Sánchez-Cordón, P.J., Chapman, D., Jabbar, T., Reis, A.L., Goatley, L., Netherton, C.L., Dixon, L., 2017. Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3. Antiviral. Res. 138, 1–8.

Sanford, B., Holinka, L.G., O’Donnell, V., Krug, P.W., Carlson, J., Alfano, M., Borca, M.V., 2016. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus. Res. 213, 165–171.

Sang, H., Miller, G., Lokhandwala, S., Sangewar, N., Waghela, S.D., Bishop, R.P., Mwangi, W., 2020. Progress toward development of effective and safe African swine fever virus vaccines. Front. Vet. Sci. 7, 84.

Sayers, E.W., Bolton, E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler‐Bauer, A., Lanczycki, C.J., Lathrop, S., Lu, Z., Thibaud‐Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., Tse, T., 2021. Database resources of the national center for biotechnology information. Nucleic. Acids. Res. 50, 20–26.

Schäfer, A., Franzoni, G., Netherton, C.L., Hartmann, L., Blome, S., Blohm, U., 2022. Adaptive cellular immunity against African swine fever virus infections. Pathogens. 11, 274–274.

Seder, R.A., Mascola, J.R., 2003. Immunology. In: Bloom, B.R., Lambert, P.H. (Eds.), The vaccine book. Academic, Boston, pp. 51–72.

Seok, C., Baek, M., Steinegger, M., Park, H., Lee, G.R., Won, J., 2021. Accurate protein structure prediction: what comes next?. Bio. Design. 9, 47–50.

Sereda, A.D., Balyshev, V.M., Kazakova, A.S., Imatdinov, A.R., Kolbasov, D.V., 2020. Protective properties of attenuated strains of African swine fever virus belonging to seroimmunotypes I–VIII. Pathogens. 9(4), 274.

Shi, J.Y., Liu, W., Zhang, M., Sun, J., Xu, X., 2021. The A179L gene of African swine fever virus suppresses virus-induced apoptosis but enhances necroptosis. Viruses. 13(12), 2490–2490.

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Higgins, D.G., 2014. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 71, 539–539.

Simbulan, A.M, Banico, E.C., Sira, E.M.J.S., Ochimar, N.M.O., 2024. Immunoinformatics-guided approach for designing a pan-proteome multi-epitope subunit vaccine against African swine fever virus. Sci. Rep. 14, 1354

Singh, S., Singh, H., Tuknait, A., Chaudhary, K., Singh, B., Kumaran, S., Raghava, G.P., 2015. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol. Direct. 10, 73.

Song, J., Wang, M., Zhou, L., Tian, P., Sun, Z., Sun, J., Wang, X., Zhuang, G., Jiang, D., Wu, Y., Zhang, G., 2023. A candidate nanoparticle vaccine comprised of multiple epitopes of the African swine fever virus elicits a robust immune response. J. Nanobiotechnology. 21(1), 424.

Sonnhammer, E.L., von Heijne, G., Krogh, A., 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175-182.

Stone, S.S., Hess, W.R., 1967. Antibody response to inactivated preparations of African swine fever virus in pigs. Am. J. Vet. Res. 28(123), 475–481.

Stothard, P., 2000. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques. 28(6), 1102–1104.

Sun, W., Zhang, H., Fan, W., He, L., Chen, T., Zhou, X., Li, J., 2021. Evaluation of cellular immunity with ASFV infection by swine leukocyte antigen SLA—peptide tetramers. Viruses. 13(11), 2264–2264.

Sunwoo, S.Y., Pérez-Núñez, D., Morozov, I., Sánchez, E.G., Gaudreault, N.N., Trujillo, J.D., Mur, L., Nogal, M., Madden, D., Urbaniak, K., Kim, I.J., Ma, W., Revilla, Y., Richt, J.A., 2019. DNA-protein vaccination strategy does not protect from challenge with African swine fever virus armenia 2007 strain. Vaccines (Basel). 7(1), 12.

Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., Schatz, M.M., Kloetzel, P.M., Rammensee, H.G., Schild, H., Holzhutter, H.G., 2005. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell. Mol. Life. Sci. 62, 1025–1037.

Tesfagaber, Weldu, Wang, L., Tsegay, G., Hagoss, Y.T., Zhang, Z., Zhang, J., Zhao, D., 2021. Characterization of Anti-p54 monoclonal antibodies and their potential use for African swine fever virus diagnosis. Pathogens. 10(2), 178.

Teufel, F., Almagro, J., Johansen, A.R., Gíslason, M.H., Pihl, S.I., Tsirigos, K.D., Winther, O., Brunak, S., Heijne, G., Nielsen, H., 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025.

Thu, H., 2022. Vietnam launches ASF vaccine, announces commercialization. Available online: https://www.asian-agribiz.com/2022/06/08/vietnam-launches-asf-vaccine-an nounces-commercialization/

Thumuluri, V., Almagro Armenteros, J.J., Johansen, A.R., Nielsen, H., Winther, O., 2022. Deeploc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic. Acids. Res. 50(W1), W228-W234.

Tizard, I.R., 2021. Porcine vaccines. In: Tizard, I.R. (Ed.), Vaccines for veterinarians. Elsevier, Missouri, pp. 225-242.e1.

Tizard, I.R., 2018. Veterinary immunology, 10th edition. Saunders, Philadelphia.

Tran, X.H., Phuong, L.T.T., Huy, N.Q., Thuy, D.T., Nguyen, V.D., H., Q.P., Borca, M.V., 2022a. Evaluation of the safety profile of the ASFV vaccine candidate ASFV-G-ΔI177L. Viruses. 14(5), 896.

Tran, X.H., Phuong, L.T.T., Huy, N.Q., Thuy, D.T., Nguyen, V.D., Quang, P.H., Gladue, D.P., 2022b. African swine fever virus vaccine candidate ASFV‐G‐ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transbound. Emerg. Dis. 69(4), 497–504.

Tulman, E.R., Delhon, G.A., Ku, B.K., Rock, D.L., 2009. African swine fever virus. In: Etten, J.L. (Ed.), Lesser known large dsDNA viruses. Springer, New York, pp. 43–87.

Urbano, A.C., Ferreira, F. 2022. African swine fever control and prevention: an update on vaccine development. Emerg. Microbes. Infect. 11(1), 2021–2033.

Van der Weken, H., Cox, E., Devriendt, B., 2020. Advances in oral subunit vaccine design. Vaccines (Basel). 9(1), 1.

Vietnam first to commercially produce African swine fever vaccine, 2022. Available online: https://www.nationalhogfarmer.com/biosecurity/vietnam-first-to-commercially-produ ce-african-swine-fever-vaccine.

Viltrop, A., Boinas, F., Depner, K., Jori, F., Kolbasov, D., Laddomada, A., Chenais, E., 2021. African swine fever epidemiology, surveillance and control. In: Iacolina, L., Penrith, M.L., Bellini, S., Chenais, E., Jori, F., Montoya, M., Ståhl, K., Gavier-Widén, D. (Eds.), Understanding and combatting african swine fever: a European perspective. Wageningen Academic, Netherlands, pp. 229-261

Vuono, E., Ramírez-Medina, E., Pruitt, S., Rai, A., Espinoza, N., Silva, E., Borca, M.V., 2022a. Deletion of the ASFV dUTPase Gene E165R from the genome of highly virulent African swine fever virus Georgia 2010 does not affect virus replication or virulence in domestic Pigs. Viruses. 14(7), 1409–1409.

Vuono, E., Ramírez-Medina, E., Pruitt, S., Rai, A., Espinoza, N., Velazquez‐Salinas, L., Gladue, D.P., 2021. Evaluation of the function of the ASFV KP177R Gene, encoding for structural protein p22, in the process of virus replication and in swine virulence. Viruses. 13(6), 986.

Vuono, E., Ramirez-Medina, E., Silva, E., Rai, A., Pruitt, S., Espinoza, N., Valladares, A., Velazquez-Salinas, L., Gladue, D.P., Borca, M.V., 2022. Deletion of the H108R gene reduces virulence of the pandemic eurasia strain of African swine fever virus with surviving animals being protected against virulent challenge. J. Virol. 96(14), e0054522.

Walczak, M., Juszkiewicz, M., Szymankiewicz, K., Szczotka-Bochniarz, A., Woźniakowski, G., 2022. ASF-survivors’ sera do not inhibit African swine fever virus replication. J. Vet. Res. 66(1), 21–27.

Wang, G., Xie, M., Wu, W., Chen, Z., 2021. Structures and functional diversities of ASFV Proteins. Viruses. 13(11), 2124.

Wang, S., Sun, S., Li, Z., Zhang, R., Xu, J., 2017. Accurate De Novo prediction of protein contact map by Ultra-Deep learning model. PLoS. Comput. Biol. 13, 1005324.

Wang, T., Luo, R., Sun, Y., Qiu, H.J., 2021. Current efforts towards safe and effective live attenuated vaccines against african swine fever: challenges and prospects. Infect. Dis. Poverty. 10(1), 137.

Wang, Y., Kang, W., Yang, W., Zhang, J., Li, D., Zheng, H., 2021. Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: a review. Front. immunol. 12, 715582.

Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., Hou, T., 2019. HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic. Acids. Res. 47(W1), W322-W330.

Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V., Keedy, D.A., Hintze, B.J., Chen, V.B., Jain, S., Lewis, S.M., Arendall, W.B., Snoeyink, J., Adams, P.D., Lovell, S.C., Richardson, J.S., Richardson, D.C., 2017. MolProbity: more and better reference data for improved all‐atom structure validation. Protein. Sci. 27(1), 293–315.

World Organisation for Animal Health, 2019. African swine fever. Available online: https://www.woah.org/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/AFRICAN_SWINE_FEVER.pdf

World Organisation for Animal Health, 2023. African swine fever ASF – situation report 39. Available online: https://www.woah.org/app/uploads/2023/08/asf-report39.pdf

Xie, Z., Liu, Y., Di, D., Liu, J., Gong, L., Chen, Z., Li, Y., Yu, W., Lv, L., Zhong, Q., Song, Y., Liao, X., Song, Q., Wang, H., Chen, H., 2022. Protection evaluation of a five-gene-deleted African swine fever virus vaccine candidate against homologous challenge. Front. Microbiol. 13, 902932.

Xu, L., Hao, F., Jeong, D.G., Chen, R., Gan, Y., Zhang, L., Yeom, M., Lim, J.W., Yu, Y., Bai, Y., Zeng, Z., Liu, Y., Xiong, Q., Shao, G., Wu, Y., Feng, Z., Song, D., Xie, X., 2023. Mucosal and cellular immune responses elicited by nasal and intramuscular inoculation with ASFV candidate immunogens. Front. Immunol. 14, 1200297.

Xue, L.C., Rodrigues, J.P., Kastritis, P.L., Bonvin, A.M., Vangone, A., 2016. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics. 32(23), 3676-3678.

Yáñez, R.J., Boursnell, M., Nogal, M.L., Yuste, L., Viñuela, E., 1993a. African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA-dependent RNA polymerases. Nucleic. Acids. Res. 21(10), 2423–2427.

Yang, J., Li, S., Tian, F., Zhang, X., Yang, F., Cao, W., Zheng, H., 2021. African swine fever virus F317L protein inhibits NF-κB activation to evade host immune response and promote viral replication. Msphere. 6(5), e0065821.

Yang, S., Miao, C., Liu, W., Zhang, G., Shao, J., Chang, H., 2023. Structure and function of African swine fever virus proteins: current understanding. Front. Microbiol. 14, 1043129.

Yang, Y., Xia, Q., Zhou, L., Zhang, Y., Guan, Z., Zhang, J., Wei, J., 2023. B602L-Fc fusion protein enhances the immunogenicity of the B602L protein of the African swine fever virus. Front. Immunol. 14, 1186299.

Yin, D., Geng, R., Shao, H., Ye, J., Qian, K., Chen, H., Qin, A., 2022. Identification of novel linear epitopes in P72 protein of African swine fever virus recognized by monoclonal antibodies. Front. Microbiol. 13, 1055820.

Zajac, M.D., Sangewar, N., Lokhandwala, S., Bray, J., Sang, H., McCall, J., Mwangi, W., 2022. Adenovirus-vectored African swine fever virus pp220 induces robust antibody, IFN-γ, and CTL responses in pigs. Front. Vet. Sci. 9, 921481.

Zajac, M.D., Trujillo, J.D., Yao, J., Kumar, R., Sangewar, N., Lokhandwala, S., Mwangi, W., 2023. Immunization of pigs with replication-incompetent adenovirus-vectored African swine fever virus multi-antigens induced humoral immune responses but no protection following contact challenge. Front. Vet. Sci. 10, 1208275.

Zakaryan, H., Cholakyans, V., Simonyan, L., Misakyan, A., Karalova, E., Chavushyan, A., Karalyan, Z., 2015. A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II. Arch. Virol. 160(6), 1407–1414.

Zhang, G., Liu, W., Gao, Z., Chang, Y., Yang, S., Peng, Q., Chang, H., 2022. Antigenic and immunogenic properties of recombinant proteins consisting of two immunodominant African swine fever virus proteins fused with bacterial lipoprotein OprI. Virol. J. 19(1), 1–16.

Zhang, G., Liu, W., Gao, Z., Yang, S., Zhou, G., Chang, Y., Chang, H., 2021. Antigenicity and immunogenicity of recombinant proteins comprising African swine fever virus proteins p30 and p54 fused to a cell-penetrating peptide. Int. Immunopharmacol. 101, 108251.

Zhang, G., Liu, W., Yang, S., Song, S., Ma, Y., Zhou, G., Chang, H., 2023. Evaluation of humoral and cellular immune responses induced by a cocktail of recombinant African swine fever virus antigens fused with OprI in domestic pigs. Virol. J. 20(1), 1–17.

Zhang, H., Zhao, S., Zhang, H., Qin, Z., Shan, H., Cai, X., 2023a. Vaccines for African swine fever: an update. Front. Microbiol. 14, 1139494.

Zhang, H., Zhao, S., Zhang, H., Shen, Y., Zhang, P., Shan, H., Cai, X., 2023b. Orally administered recombinant Lactobacillus expressing African swine fever virus antigens that induced immunity responses. Front. Microbiol. 13, 1103327.

Zhang, J., Zhang, Y., Chen, T., Yang, J., Yue, H., Wang, L., Hu, R., 2021. Deletion of the L7L-L11L genes attenuates ASFV and induces protection against homologous challenge. Viruses. 13(2), 255.

Zhang, Y., Zhang, Z., Zhang, F., Zhang, J., Jiao, J., Hou, M., Tan, X., 2023. ASFV transcription reporter screening system identifies ailanthone as a broad antiviral compound. Virol. Sin. 38(3), 459–469.

Zhao, G., Li, T., Liu, X., Zhang, T., Zhang, Z., Kang, L., Song, J., Zhou, S., Chen, X., Wang, X., Li, J., Huang, L., Li, C., Bu, Z., Zheng, J., Weng, C., 2022. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. J. Biol. Chem. 298(1), 101480.

Zhao, H., Ren, J., Wu, S., Guo, H., Du, Y., Wan, B., Zhang, G., 2022. HRP-conjugated-nanobody-based cELISA for rapid and sensitive clinical detection of ASFV antibodies. Appl. Microbiol. Biotechnol. 106(11), 4269–4285.

Zhao, H., Wang, G., Dong, H., Wu, S., Du, Y., Wan, B., Zhang, A., 2023. Identification of a Linear B Cell Epitope on p54 of African Swine Fever Virus Using Nanobodies as a Novel Tool. Microbiol. Spectr. 11(3), e0336222.

Zheng, X., Nie, S., Feng, W.-H., 2022. Regulation of antiviral immune response by African swine fever virus ASFV. Virol. Sin. 37(2), 157–167.

Zhou, X., Lu, H., Wu, Z., Zhang, X., Zhang, Q., Zhu, S., Sun, H., 2022. Comparison of mucosal immune responses to African swine fever virus antigens intranasally delivered with two different viral vectors. Res. Vet. Sci. 150, 204–212.

Zhu, J.J., 2022. African swine fever vaccinology: the biological challenges from immunological perspectives. Viruses. 14(9), 2121.