The influence of phytobiotic feed additive on the gut microbiome of common carp (Cyprinus carpio) https://doi.org/10.12982/VIS.2025.052

Main Article Content

Arinzhanov Azamat Ersainovich
Miroshnikova Elena Petrovna
Yausheva Elena Vladimirovna
Kilyakova Yulia Vladimirovna

Abstract

Under conditions of intensive fish cultivation, phytobiotic consumption will neutralize such phenomena as a decrease in the immune and antioxidant status of the body, an increase in productivity by improving consumption, digestibility, assimilation of feed, normalization of intestinal microflora, and homeostasis in general. The purpose of this work was to evaluate the influence of the phytobiotic "Probiocid-Phyto" on the growth performance and gut microbiome of common carp (Cyprinus carpio). The inclusion of the phytobiotic "Probiocide-Phyto" in the diet of fish had a productive effect on the growth of fish, for eight weeks of the experiment there was recorded an increase in fish weight relative to the control up to 17.3 % (P≤0.05). An analysis of the composition of the intestinal microbiota showed that changes in the ratio of the main groups of microorganisms may be one of the factors contributing to the rapid growth of fish. The introduction of  Probiocide-Phyto into the diet of fish contributed to an increase in the intestinal microbiota of bacteria of the taxa Pseudomonadota and Bacteroidota by 17.2% and 10.7%, respectively. The main changes in the intestinal microbiota of fish were associated with changes in the number of bacteria of genus Aurantimicrobium (- 23%), unclassified_Bacillota (- 10.1%), genus Polynucleobacter (- 17.3%), genus Aeromonas (+ 33.1%) and genus Pseudaeromonas (+ 5.97%). A decrease in the number of bacteria was noted in the classes unclassified_Bacillota, Betaproteobacteria and Actinomycetota.

Article Details

How to Cite
Arinzhanov Azamat Ersainovich, Miroshnikova Elena Petrovna, Yausheva Elena Vladimirovna, & Kilyakova Yulia Vladimirovna. (2024). The influence of phytobiotic feed additive on the gut microbiome of common carp (Cyprinus carpio) : https://doi.org/10.12982/VIS.2025.052. Veterinary Integrative Sciences, 23(2), 1–11. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/267480
Section
Research Articles

References

Busti, S., Rossi, B., Volpe, E., Ciulli, S., Piva, A., D'Amico, F., Soverini, M., Candela, M., Gatta, P.P., Bonaldo, A., Grilli, E., Parma, L., 2020. Effects of dietary organic acids and nature identical compounds on growth, immune parameters and gut microbiota of European sea bass. Sci. Rep. 10(1), 21321.

Chowdhury, H., Kumar Bera, A., Subhasmita Raut, S., Chandra Malick, R., Sekhar Swain, H., Saha, A., Kumar Das, B., 2023. In Vitro antibacterial efficacy of Cymbopogon Flexuosus essential oil against Aeromonas Hydrophila of fish origin and in silico molecular docking of the essential oil components against DNA Gyrase-B and their drug-likeness. Chem. Biodivers. 20(3), e202200668.

Estaiano de Rezende, R.A., Soares, M.P., Sampaio, F.G., Cardoso, I.L., Ishikawa, M.M., Lima Dallago, B.S., Rantin, F.T., Teixeira Duarte, M.C., 2021. Phytobiotics blend as a dietary supplement for Nile tilapia health improvement. Fish. Shellfish. Immunol. 114, 293–300.

Fan, Z., Wu, D., Li, J., Li, C., Zheng, X., Wang, L., 2022. Phosphorus nutrition in Songpu Mirror Carp (Cyprinus carpio Songpu) during chronic carbonate alkalinity stress: effects on growth, intestinal immunity, physical barrier function, and intestinal microflora. Front. Immunol. 13, 900793.

Fan, Z., Wu, D., Li, J., Zhang, Y., Cui, Z., Li, T., Zheng, X., Liu, H., Wang, L., Li, H., 2022. Assessment of fish protein hydrolysates in juvenile largemouth bass (Micropterus Salmoides) diets: effect on growth, intestinal antioxidant status, immunity, and microflora. Front. Nutr. 9, 816341.

Gayed, M.A., Elabd, H., Tageldin, M., Abbass, A., 2021. Probiotic Zado® (Ruminococcus Flavefaciens) boosts hematology, immune, serum proteins, and growth profiles in Nile tilapia (Oreochromis niloticus). Fish. Shellfish. Immunol. Rep. 2, 100021.

Ghodrati, M., Islami, H.R., Shekarabi, S.P.H., Masouleh, A.S., Mehrgan, M.S., 2021. Combined effects of enzymes and probiotics on hemato-biochemical parameters and immunological responses of juvenile Siberian sturgeon (Acipenser baerii). Fish. Shellfish. Immunol. 112, 116-124.

Hayatgheib, N., Fournel, C., Calvez, S., Pouliquen, H., Moreau, E., 2020. In vitro antimicrobial effect of various commercial essential oils and their chemical constituents on Aeromonas salmonicida subsp. salmonicida. J. Appl. Microbiol. 129(1), 137-145.

Ke, F., Gao, Y., Liu, L., Zhang, C., Wang, Q., Gao, X., 2020. Comparative analysis of the gut microbiota of grass carp fed with chicken faeces. Environ. Sci. Pollut. Res. Int. 27(26), 32888-32898.

Kiczorowska, B., Samolinska, W., Al-Yasiry, A., Kiczorowski, P., Winiarska-Mieczan, A., 2017. The natural feed additives as immunostimulants in monogastric animal nutrition – a review. Ann. Anim. Sci. 17(3), 605-625.

Kondera, E., Bojarski, B., Ługowska, K., Kot, B., Witeska, M., 2020. Effects of oxytetracycline and gentamicin therapeutic doses on hematological, biochemical and hematopoietic parameters in Cyprinus carpio juveniles. Animals. 10(12), 2278.

Li, X., Yan, Q., Xie, S., Hu, W., Yu, Y., Hu, Z., 2013. Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L.). PLoS One. 8(5), e64577.

Litvak, Y., Byndloss, M.X., Tsolis, R.M., Bäumler, A.J., 2017. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 39, 1-6.

Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., Balamurugan, R., 2020. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients?. Nutrients. 12(5), 1474.

Messina, M., Iacumin, L., Pascon, G., Tulli, F., Tibaldi, E., Cardinaletti, G., 2023. Effect of feed restriction and refeeding on body condition, digestive functionality and intestinal microbiota in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 49(1), 169–189.

National Academy of Sciences, 1996. Guide for the care and use of laboratory animals. National Academy Press, Washington, D.C.Rashidian, G., Boldaji, J.T., Rainis, S., Prokić, MD., Faggio, C., 2021. Oregano (Origanum vulgare) Extract Enhances Zebrafish (Danio rerio) Growth Performance, Serum and Mucus Innate Immune Responses and Resistance against Aeromonas hydrophila Challenge. Animals. 11(2), 299.

Rimoldi, S., Terova, G., Ascione, C., Giannico, R., Brambilla, F., 2018. Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources. PLoS One. 13(3), e0193652.

Saffari, S., Keyvanshokooh, S., Zakeri, M., Johari, S. A., Pasha-Zanoosi, H., Mozanzadeh, M.T., 2018. Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiol. Biochem. 44(4), 1087–1097.

Sarmiento-Vizcaíno, A., Martín, J., Reyes, F., García, L.A., Blanco, G., 2021. Bioactive natural products in Actinobacteria Isolated in rainwater from storm clouds transported by Western Winds in Spain. Front. Immunol. 12, 773095.

Sizova, E., Yausheva, E., Marshinskaia, O., Kazakova, T., Khlopko, Y., Lebedev, S., 2022. Elemental composition of the hair and milk of black-spotted cows and its relationship with intestinal microbiome reorganization. Vet. World. 15(11), 2565–2574.

Shelton, C.D., Byndloss, M.X., 2020. Gut epithelial metabolism as a key driver of intestinal dysbiosis associated with noncommunicable diseases. Infect. Immun. 88(7), e00939-19.

Sun, S., Xu, X., Liang, L., Wang, X., Bai, X., Zhu, L., He, Q., Liang, H., Xin, X., Wang, L., Lou, C., Cao, X., Chen, X., Li, B., Wang, B., Zhao, J., 2021. Lactic Acid-producing probiotic saccharomyces cerevisiae attenuates ulcerative colitis via suppressing macrophage pyroptosis and modulating gut microbiota. Front. Immunol. 12, 777665.

Wang, J., Jaramillo-Torres, A., Li, Y., Kortner, T.M., Gajardo, K., Brevik, Ø.J., Jakobsen, J. V., Krogdahl, Å., 2021. Microbiota in intestinal digesta of Atlantic salmon (Salmo salar), observed from late freshwater stage until one year in seawater, and effects of functional ingredients: a case study from a commercial sized research site in the Arctic region. Anim. Microbiome. 3(1), 14.

Wang, S.T., Meng, X.Z., Zhang, J.H., Dai, Y.F., Shen, Y., Xu, X.Y., Wang, R.Q., Li, J.L., 2020. 16S rRNA sequencing analysis of the correlation between the intestinal microbiota and body-mass of grass carp (Ctenopharyngodon idella). Comp. Biochem. Physiol. Part D Genomics Proteomics. 35, 100699.

Wasiu, A.J., Ayodeji, A.A., Olayinka, A.O., Comfort, T.A., Adijat, E.A., Grace, A.O., 2023. Effect of dietary cinnamon supplementation on the growth in length, haematology, serum biochemistry, intestinal microbiota and enzymes and histomorphological changes of the intestine, liver and the kidney of Heteroclarias (Clarias gariepinus ♀ × Heterobranchus bidorsalis♂). Vet. Sci. 21(3), 973 – 997.

Zhang, Y., Liang, X.F., He, S., Chen, X., Wang, J., Li, J., Zhu, Q., Zhang, Z., Li, L., Alam, M.S., 2020. Effects of high carbohydrate diet-modulated microbiota on gut health in Chinese Perch. Front. Microbiol. 11, 575102.