Relationship of follicle sizes and estrous manifestations with pregnancy in water buffaloes under two fixed-time artificial insemination protocols https://doi.org/10.12982/VIS.2025.045

Main Article Content

Zeshalyn Fajardo
Eufrocina Atabay
Edwin Atabay
Carlito Dela Cruz
Ma. Elizabeth Leoveras
Roseline Tadeo
Jhon Paul Apolinario

Abstract

The study determined the association of follicle sizes and estrous manifestations with pregnancy of the two Fixed Time Artificial Insemination (FTAI) protocols and evaluated the factors that can influence pregnancy outcome in water buffaloes.  A total of 285 riverine buffaloes were subjected to either Controlled Internal Drug Release-Synch-human Chorionic Gonadotropin (CIDR-Synch-hCG) or Select AI Protocol. For CIDR-Synch-hCG protocol, buffaloes were administered with GnRH with insertion of CIDR on Day 0. Prostaglandin (PGF2α) was given on Day 7 with the removal of CIDR. The hCG was given on Day 9 and AI was performed on Day 10. For Select AI protocol, the procedure was similar to CIDR-Synch-hCG except that insemination was done either on Day 9 or Day 10 based on the size of the pre-ovulatory follicle. Follicle sizes were taken using ultrasound on Days 0, 7, 9 and 10 and estrous signs were taken on the Day of AI. Pregnancy diagnosis by ultrasound was done around Day 40 post-AI. Findings indicated that there is a significant correlation between follicle size on the day of AI, estrous signs, and FTAI protocol with pregnancy. Select AI protocol resulted in a significantly higher (P<0.05) pregnancy rate (55.26%) compared to the CIDR-Synch group (44.71%). Logistic regression analysis likewise revealed that Select AI protocol, pre-ovulatory follicle size on the day of AI, and estrous signs are significant factors on the success of FTAI program in water buffaloes. The present findings provide valuable information for optimizing reproductive success not only in water buffaloes but in other livestock as well.

Article Details

How to Cite
Fajardo , Z. . ., Atabay, E. ., Atabay, E. ., Dela Cruz, C. ., Leoveras , M. E. ., Tadeo, R. ., & Apolinario, J. P. . (2024). Relationship of follicle sizes and estrous manifestations with pregnancy in water buffaloes under two fixed-time artificial insemination protocols: https://doi.org/10.12982/VIS.2025.045. Veterinary Integrative Sciences, 23(2), 1–13. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/268170
Section
Research Articles

References

Alapati, A., Kapa, S.R., Jeepalyam, S., Rangappa, S.M., Yemireddy, K.R., 2010. Development of the body condition score system in Murrah buffaloes: validation through ultrasonic assessment of body fat reserves. J. Vet. Sci. 11, 1–8.

Atabay, E.P., Atabay, E.C., Maylem, E.R.S., Tilwani, R.C., Flores, E.B., Sarabia, A.S., 2019. Improved pregnancy in water buffaloes through synchronization of ovulation and fixed time artificial insemination technique. Philipp. J. Vet. Med. 56, 105.

Atabay, E.P., Atabay, E.C., Dela Cruz, C.F., Apolinario, J.P., Maylem, E.R.S., Flores, E.B., 2023. Influence of ovarian follicle sizes and estrous signs on pregnancy following progesterone-based fixed time artificial insemination in water buffaloes. J. Buffalo. Sci. 12, 143-150.

Baruselli, P.S., Soares, J.G., Bayeux, B.M., Silva, J.C.B., Mingoti, R.D., Carvalho, N.A.T., 2018. Assisted reproductive technologies (ART) in water buffaloes. Anim. Reprod. 15, 971–983.

Baruselli, P.S., Reis, E.L., Marquez, M.O., Nasser, L.F., Bo, G.A., 2007. Fixed time insemination in buffaloes. Ital. J. Anim. Sci. 6, 107-118.

Baruselli, P.S., Madureira, E.H., Visintin, J.A., Barnabe, V.H., Barnabe, R.C., Amaral, R., 1999. Timed insemination using synchronization of ovulation in buffalo. Rev. Bras. Reprod. Anim. 23, 360-362.

Bisinotto, R.S., Ribeiro, E.S., Santos, J.E.P., 2014. Synchronization of ovulation for management of reproduction in dairy cows. Anim. 8, 151-159.

Bonafos, L.D., Kot, K., Ginther, O.J., 1995. Physical characteristics of the uterus during the bovine estrous cycle and early pregnancy. Theriogenology. 43(4), 713-721.

Busch, D.C., Atkins, J.A., Bader, J.F., Schafer, D.J., Patterson, D.J., Geary, T.W., 2008. Effect of ovulatory follicle size and expression of estrus on progesterone secretion in beef cows. J. Anim. Sci. 86, 553-563.

Campanile, G., Di Palo, R., Neglia, G., Vecchio, D., Gasparrini, B., Prandi, A., Galiero, G., D’Occhio, M.J., 2007. Corpus luteum function and embryonic mortality in buffaloes treated with a GnRH agonist, hCG and progesterone. Theriogenology. 67, 1393–1398.

Campanile, G., Vecchio, D., Neglia, G., Di Palo, R., Prandi, A., D’Occhio, M.J., 2008. Progesterone and pregnancy status in buffaloes treated with a GnRH agonist. Livestock. Sci. 115, 242–248.

De Rensis, F., Marconi, P., Capelli, T., Gatti, F., Facciolongo, F., Franzini, S., Scaramuzzi, R.J., 2002. Fertility in post-partum dairy cows in winter or summer following estrus synchronization and fixed time AI after the induction of an LH surge with gonadotropin releasing hormone (GnRH) or human chorionic gonadotropin (hCG). Theriogenology. 58(9), 1675-1687.

Galvão, K.N., Ribeiro, E.S., Santos, J.E.P., 2014. What is the most cost-effective breeding program for breeding heifers—timed AI, estrous detection, or a combination of both? VM199/VM199, 5/2014. Available online: https://journals.flvc.org/edis/article/view/ 131755

Gimenes, L.U., Sá Filho, M.F., Carvalho, N.A., Torres-Junior, J.R., Souza, A.H., Madureira, E.H., Trinca, L.A., Sartorelli, E.S., Barros, C.M., Carvalho, J.B., Mapletoft, R.J., Baruselli, P.S., 2008. Follicle deviation and ovulatory capacity in Bos indicus heifers. Theriogenology. 69, 852–858.

Lopes, A.S., Butler, S.T., Gilbert, R.O., Butler, W.R., 2007. Relationship of pre-ovulatory follicle size, estradiol concentrations and season to pregnancy outcome in dairy cows. Anim. Reprod. Sci. 99, 34–43.

Lynch, C.O., Kenny, D.A., Childs, S., Diskin, M.G., 2010. The relationship between periovulatory endocrine and follicular activity on corpus luteum size, function, and subsequent embryo survival. Theriogenology. 73, 190–198.

Madan, M.L., Das, S.K., Palta, P., 1996. Application of reproductive technology to buffaloes. Anim. Reprod. Sci. 42(1), 299-306.

Monteiro, B.M., de Souza, D.C., Vasconcellos, G.S., Corrêa, T.B., Vecchio, D., de Sá Filho, M.F., de Carvalho, N.A., Baruselli, P.S., 2016. Ovarian responses of dairy buffalo cows to timed artificial insemination protocol, using new or used progesterone devices, during the breeding season (autumn-winter). Anim. Sci. J. 87(1), 13–20.

Montes, A.R., Lapitan, J.E., Sarabia, A.S., 2019. Competency-based learning material: Artificial Insemination NC II (Large Ruminants). Philippine Carabao Center, Science City of Munoz, Nueva Ecija.

Murdoch, W.J., Van Kirk, E.A., 1998. Luteal dysfunction in ewes induced to ovulate early in the follicular phase. Endocrinology. 139(8), 3480–3484.

Neglia, G., Gasparrini, B., Salzano, A., Vecchio, D., De Carlo, E., Cimmino, R., Balestrieri, A., D’Occhio, M., Campanile, G., 2016. Relationship between the ovarian follicular response at the start of an Ovsynch–TAI program and pregnancy outcome in the Mediterranean river buffalo. Theriogenology. 86, 2328-2333.

Pancarci, Ş.M., Öztürkler, Y., Güngö, R.Ö., Kaçar, C., Yildiz, S., Kaya, D., 2008. Use of carazolol at pre-synchronized timed artificial insemination in cows. Acta Vet. Brno. 77, 59-64.

Pandey, A.K., Ghuman, S.P.S., Dhaliwal, G.S., Agarwal, S.K., 2011. Impact of pre-ovulatory follicle diameter on plasma estradiol, subsequent luteal profiles, and conception rate in buffalo (Bubalus bubalis). Anim. Reprod. Sci. 123, 169-174.

Pandey, A.K., Ghuman, S.P.S., Dhaliwal, G.S., Honparkhe, M., Phogat, J.B., Kumar, S., 2018. Effects of preovulatory follicle size on estradiol concentrations, corpus luteum diameter, progesterone concentrations and subsequent pregnancy rate in buffalo cows (Bubalus bubalis). Theriogenology. 107, 57-62.

Pereira, M.H., Rodrigues, A.D.P., de Carvalho, R.J., Wiltbank, M.C., Vasconcelos, J.L.M., 2014. Increasing length of an estradiol and progesterone timed artificial insemination protocol decreases pregnancy losses in lactating dairy cows. J. Dairy. Sci. 97, 1454–1464.

Pereira, M.H.C., Sanches, C.P., Guida, T.G., Rodrigues, A.D.P., Aragon, F.L., Veras, M.B., Borges, P.T., Wiltbank, M.C., Vasconcelos, J.L.M., 2013. Timing of prostaglandin F2α treatment in an estrogen-based protocol for timed artificial insemination or timed embryo transfer in lactating dairy cows. J. Dairy. Sci. 96(5), 2837-2846.

Perry, G.A., Smith, M.F., Lucy, M.C., Green, J.A., Parks, T.E., MacNeil, M.D., Roberts, A.J., Geary, T.W., 2005. Relationship between follicle size at insemination and pregnancy success. Proc. Natl. Acad. Sci. USA. 102(14), 5268-5273.

Perry, G.A., Smith, M.F., Roberts, A.J., MacNeil, M.D., Geary, T.W., 2007. Relationship between size of the ovulatory follicle and pregnancy success in beef heifers. J. Dairy. Sci. 85, 684–689.

Pfeifer, L.F.M., Leal, S.C.B., Schneider, A., Schmitt, E., Correa, M.N., 2012. Effect of the ovulatory follicle diameter and progesterone concentration on the pregnancy rate of fixed-time inseminated lactating beef cows. R. Bras. Zootec. 41, 1004-1008.

Pfeifer, L.F.M., Mapletoft, R.J., Kastelic, J.P., Small, J.A., Adams, G.P., Dionello, N.J., Singh, J., 2009. Effects of low versus physiologic plasma progesterone concentrations on ovarian follicular development and fertility in beef cattle. Theriogenology. 72, 1237–1250.

Pursley, J.R., Mee, M.O., Wiltbank, M.C., 1995. Synchronization of ovulation in dairy cows using PGF2α and GnRH. Theriogenology. 44(7), 915-923.

Sá Filho, M.F., Crespilho, A.M., Santos, J.E.P., Perry, G.A., Baruselli, P.S., 2010. Ovarian follicle diameter at timed insemination and estrous response influence likelihood of ovulation and pregnancy after estrous synchronization with progesterone or progestin-based protocols in suckled Bos indicus cows. Anim. Reprod. Sci. 120, 23–30.

Sá Filho, M.F., Baldrighi, J.M., Sales, J.N.S., Crepaldi, G.A., Carvalho, J.B.P., Bó, G.A., Baruselli, P.S., 2011. Induction of ovarian follicular wave emergence and ovulation in progestin-based timed artificial insemination protocols for Bos indicus cattle. Anim. Reprod. Sci. 129, 132–139.

Smith, M.F., McIntush, E.W., Smith, G.W., 1994. Mechanisms associated with corpus luteum development. J. Anim. Sci. 72, 1857–1872.

Schmitt E.J-P., Diaz T., Drost M., Fredriksson E.W., Thatcher W.W., 1996. Use of a gonadotropin-releasing hormone or human chorionic gonadotropin for timed insemination in cattle. J. Anim. Sci. 74, 1084-1091.

Stevenson, J.S., 2011. Alternative programs to presynchronize estrous cycles in dairy cattle before a timed artificial insemination program. J. Dairy. Sci. 94, 205-217.

Stevenson, J.S., 2016. Synchronization and artificial insemination strategies in dairy herds. Vet. Clin. North Am. Food Anim. Pract. 32, 349-364.

Vasconcelos, J.L.M., Sartori, R., Oliveira, H.N., Guenther, J.G., Wiltbank, M.C., 2001. Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. Theriogenology. 56, 307-314.

Wiltbank, M.C., Pursley, J.R., 2014. The cow as an induced ovulator: Timed AI after synchronization of ovulation. Theriogenology. 81, 170-185.