Prevalence of antibiotic resistance genes of Escherichia coli at the pig slaughterhouses in the Mekong Delta https://doi.org/10.12982/VIS.2025.005
Main Article Content
Abstract
The study was conducted to determine the antimicrobial susceptibility and antibiotic-resistance genes of Escherichia coli at the pig slaughterhouses in the Mekong Delta, Vietnam. A total of 60 samples were collected at the slaughterhouse in the Mekong Delta, including 24 feces, 24 carcasses, 8 floors, and 4 wastewater samples. The prevalence of E. coli in feces, wastewater, carcasses, and floor samples was 91.67%, 50.00%, 29.17%, and 25.00%, respectively. A total of 79 E. coli isolates were examined for antimicrobial susceptibility to 15 antibiotics using the disc diffusion method according to CLSI 2021 guidelines. E. coli strains were highly resistant to amoxicillin (83.54%), ampicillin (78.48%), streptomycin (63.29%), and florfenicol (63.29%). However, those E. coli strains were sensitive to amoxicillin + acid clavulanic and amikacin (97.47%), cefaclor (95.45%), cefuroxime (93.67%), and enrofloxacin (92.41%). The results showed that 96.2% of examined E. coli strains were resistant from one antibiotic to eight antibiotics, and the most frequent multidrug-resistance phenotype was amoxicillin + ampicillin + florfenicol + streptomycin (13.92%). The prevalence of antibiotic resistance genes (strA, sulII, qnrA, tetA, blaampC, blaTEM, and blaCTX-M) in E. coli was determined by PCR. The prevalence of strA, sulII, qnrA, tetA, blaampC, and blaTEM genes in E. coli strains was 75.67%, 72.97%, 75.67%, 83.78%, 91.89%, and 83.78% respectively; however, blaCTX-M gene was not detected. Therefore, the contamination of E. coli exhibiting antibiotic resistance in pig slaughterhouses should be controlled to prevent public health.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Bouvet, J., Montet, M.P., Rossel, R., Le Roux, A., Bavai, C., Ray-Gueniot, S., Mazuy, C., Atrache, V., Vernozy-Rozand, C., 2002. Effects of slaughter processes on pig carcass contamination by verotoxin-producing Escherichia coli and E. coli O157:H7. Int. J. Food. Microbiol. 77(1-2), 99-108.
Barco, L., Belluco, S., Roccato, A., Ricci, A., 2015. A systematic review of studies on Escherichia coli and Enterobacteriaceae on beef carcasses at the slaughterhouse. Int. J. Food. Microbiol. 207, 30-39.
Barrow, G.I., Feltham, R.K., 2003. Cowan and steel’s manual for the identification of medical bacteria, (3rd edition). Cambridge University Press, Cambridge, pp.331.
Boerlin, P., Travis, R., Gyles, C.L., Reid-Smith, R., Heather, Lim N.J., Nicholson, V.,McEwen, S.A., Friendship, R., Archambault, M., 2005. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl.Environ. Microbiol. 71(11), 6753-6761.
Bui, T.T., Nguyen, V.N., Thai, Q.H., Le, T.H., Nguyen, N.T, Tran, T.D., 2004. Isolation and typing of E. coli antigens in feces of sows and piglets in Tien Giang province. J. Vet. Sci. Technol. 1, 12-19. (In Vietnamese)
Caroff, N., Espaze, E., Berard, I., Richet, H., Reynaud, A., 1999. Mutations in the ampC promoter of Escherichia coli isolates resistant to
oxyiminocephalosporins without extended spectrum β-lactamase production.FEMS Microbiol. Lett. 173(2), 459-465.
Cattoir, V., Poirel, L., Rotimi, V., Soussy, C.Z., Nordmann, P., 2007. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBLproducing enterobacterial isolates. J. Antimicrob. Chemother. 60, 394–397.
Choi, C., Cho, W.S., Chung, H.K., Jung, T., Kim, J., Chae, C., 2001. Prevalence of the enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1) gene in isolates in weaned pigs with diarrhea and/or edema disease. Vet. Microbiol.81, 65–71.
CLSI, 2021. Performance standard for antimicrobial susceptibility testing, 31st edition. Clinical and Laboratory Standard Institute M100S, Wayne, PA, USA.Dallenne, C., Costa, A.D., Decre, D., Favier, C., Arlet, G., 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 65, 490–495.
Do, K.H., Byun, J.W., Lee, W.K., 2020. Virulence genes and antimicrobial resistance of pathogenic Escherichia coli isolated from diarrheic weaned piglets in Korea.J. Anim. Sci. Technol. 62(4), 543-552.
Gow, S.P., Waldner, C.L., Harel, J., Boerlin, P., 2008. Associations between antimicrobial resistance genes in fecal generic Escherichia coli isolates from cow-calf herds in Western Canada. Appl. Environ. Microbiol. 74(12), 3658–3666.
Gyles, C.L., Fairbrother, J.M., 2010. Escherichia coli. In: Gyles, C.L., Prescott, J.F,Songer G., Thoen C.O. (Eds), Pathogenesis of bacterial infections in animals, (4th edition). Iowa State University Press, Ames, Iowa, pp. 675.
Jouini, A., Vinue, L., Slama, K.B., Saenz, Y., Klibi, N., Hammami, S., Boudabous, A., Torres, C., 2007. Characterization of CTX-M and SHV extended-spectrum b-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J. Antimicrob. Chemother. 60, 1137–1141.
Kurnia, R.S., Indrawati, A., Mayasari, N.L.P.I, Priadi, A., 2018. Molecular detection of genes encoding resistance to tetracycline and determination of plasmidmediated resistance to quinolones in avian pathogenic Escherichia coli in Sukabumi, Indonesia. Vet. World. 11(11), 1581-1586.
Ly, T.L.K., 2001. Isolation and determination of enterotoxins of E. coli strain causing diarrhea in piglets. J. Vet. Sci. Technol. 2, 13-18. (In Vietnamese)
Ly, T.L.K., Pham, Q.V., Hideki, K., Tran, T.P., Chau, B.L., Yamasaki, S., Taniguchi, T., 2003. Isolation, identification, and treatment of diarrhea in piglets caused by Enterotoxigenic Escherichia coli K88, K99, and 987P in Can Tho province.Sci. J. Can. Tho. Univ. 5, 124-133. (In Vietnamese)
Merkeviciene, L., Ambrozeviˇciene, C. B., Paškeviˇcius, G., Pikunien, A., Virgailis, M., Dailidaviˇciene, J., Daukšiene, A., Šiugždiniene, R., Ruzauskas, M., 2022. Serological variety and antimicrobial resistance in Salmonella isolated fromreptiles. Biology. 11(6), 836.
Mkuhlu, N.A., Chuks, I.B., Chikwelu, O.L., 2020. Characterization and antibiotic susceptibility profiles of pathogenic isolated from diarrhea samples within the Buffalo City Metropolitan Municipality, Eastern Cape, South Africa. Open Microbiol. J. 14(1), 321-330.
Nguyen, K.N., Le, V.T., 1996. The situation of coli bacilli in piglets before and after weaning in some provinces in the Mekong Delta. J. Vet. Sci. Technol. 4, 50-55. (In Vietnamese)
Prapasarakul, N., Tummaruk, P., Niyomtum, W., Tripipat, T., Oralak, S., 2010.Virulence genes and antimicrobial susceptibilities of hemolytic and nonhemolytic Escherichia coli isolated from post-weaning piglets in Central Thailand. J. Vet. Med. Sci. 72(12), 1603-1608.
Santos, M.M., Alcântara, A.C.M., Perecmanis, S.I., Campos, A.I., Santana, A.P., 2014. Antimicrobial resistance of bacterial strains isolated from avian cellulitis. Braz. J. Poult. Sci. 116(1), 13-18.
Savin, M., Alexander, J., Bierbaum, G., Hammerl, J.A., Hembach, N., Thomas, S.,Ricarda, M.S, Esther, S., Alexander, V., Kreyenschmidt, J., 2021. Antibioticresistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments. Sci. Rep. 11(1), 16622.
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L.,Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson,K., Patel, J., Cavaleri, M., Cox, E.M., Houchens, C.R., Grayson, M.L., Hansen,P., Singh, N., Theuretzbacher, U., Magrini, N., 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet. Infect. Dis. 18(3), 318-327.
Verburg, I., Garcia-Cobos, S., Leal, L.H., Waar, K., Friedrich, A.W., Schmitt, H.,2019. Abundance and antimicrobial resistance of three bacterial species along a complete wastewater pathway. Microorganisms. 7(9), 312.
Wang, X., Li Li, Fengxia, S., Wang, J., Weishan, C., Fengmei, C., Peng, J., 2021.Detection of mcr-1-positive Escherichia coli in a slaughterhouse. Vet. Med. Sci. 7(5), 1587-1592.
Wang, X.M., Hong, X.J., Liao, X.P., Liu, J.H., Zhang, W.J., Zhang, H., Jiang, Z.G.,Lu, D.H., Rong, X., Liu, Y.H., 2010. Antimicrobial resistance, virulence genes and phylogenetic background in Escherichia coli isolated from diseased pigs.FEMS Microbiol. Lett. 306(1), 15-27.
World Health Organization, 2014. Antimicrobial resistance global report on surveillance. WHO, Geneva, Switzerland.World Health Organization, 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO,Geneva, Switzerland.
Yang, H., Wei, S.H., Hobman, J.L., Dodd, C.E.R., 2020. Antibiotic and metal resistance in Escherichia coli isolated from pig slaughterhouses in the United Kingdom. Antibiotics (Basel). 9(11), 746.