Antibiotic resistance of Escherichia coli serotype O8 and O9 isolated from cattle in the Mekong Delta, Vietnam https://doi.org/10.12982/VIS.2024.079
Main Article Content
Abstract
This study was conducted to clarify the antimicrobial susceptibility and antibiotic resistance genes of Escherichia coli O8 and O9 isolated from 244 cattle feces collected from December 2021 to March 2022 in the Mekong Delta, Vietnam. E. coli was isolated from the feces following the method of TCVN 7686:2007 (ISO16654:2001), and serotypes O8 and O9 were identified by the PCR method. E. coli O8 and O9 were identified at a relatively high rate, with 15.98% and 8.20%, respectively. The disc diffusion method was applied to determine the antimicrobial susceptibility of those E. coli strains against thirteen antibiotics following the guidelines of the Clinical and Laboratory Standard Institute. Those E. coli O8 and O9 strains showed high susceptibility to amikacin (98.31%), doxycycline (96.61%), ofloxacin (94.92%), and levofloxacin (93.22%). However, those isolates exhibited resistance against ampicillin (47.46%), streptomycin (44.07%), and tetracycline (42.37%). Of those 59 E. coli strains, 35 strains (59.32%) were multiple resistant against two to twelve antibiotics with 25 resistant patterns. The pattern of Am+Ac+Co+Sm+Te+Cl was the most common type (6.78%). The prevalence of six antibiotic-resistance genes was determined by using PCR. Gene tetA was the most prevalent gene (66.10%), while cat1 was the least one (5.08%). Forty-five E. coli O8 and O9 strains (76.27%) harbored from two to four antibiotic resistance genes, and the pattern of strA+tetA+sulII was detected at the highest rate (23.73%). Therefore, the prevalence and antibiotic resistance of E. coli O8 and O9 should be controlled to protect cattle and human health.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Abdelgader, S.A., Shi, D., Chen, M., Zhang, L., Hejair, H.M.A., Muhammad, U., Yao, H.,Zhang, W., 2018. Antibiotics resistance genes screening and comparative genomics analysis of commensal Escherichia coli isolated from poultry farms between China
and Sudan. Biomed Res. Int. 2018, 5327450.
Anes, J., Nguyen, S.V., Eshwar, A.K., McCabe, E., Macori, G., Hurley, D., Lehner, A., Fanning, S., 2020. Molecular characterisation of multi-drug resistant Escherichia coli of bovine origin. Vet. Microbiol. 242, 108566.
Bai, L., Zhao, J., Gan, X., Wang, J., Zhang, X., Cui, S., Xia, S., Hu, Y., Yan, S., Wang, J.,2016. Emergence and diversity of Salmonella enterica serovar Indiana isolates with concurrent resistance to ciprofloxacin and cefotaxime from patients and foodproducing animals in China. Antimicrob. Agents Chemother. 60(6), 3365–3371.
Barrow, G.I., Feltham, R.K.A., 2003. Cowan and Steel᾽s Manual for the identification of the Medical Bacteria, 3rd edition. Cambridge University Press, Cambridge, U. K.Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M., 1966. Antibiotic susceptibility testing by a
standardized single disk method. Am. J. Clin. Pathol. 45(4), 493–496.
Bengtsson-Palme, J., 2018. The diversity of uncharacterized antibiotic resistance genes can be predicted from known gene variants—but not always. Microbiome 6(1), 1–12.
Boerlin, P., Travis, R., Gyles, C.L., Reid-Smith, R., Janecko, N., Lim, H., Nicholson, V.,McEwen, S.A., Friendship, R., Archambault, M., 2005. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl. Environ. Microbiol. 71(11), 6753–6761.
Cattoir, V., Poirel, L., Rotimi, V., Soussy, C.-J., Nordmann, P., 2007. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 60(2), 394–397.
Cheney, T.E., Smith, R.P., Hutchinson, J.P., Brunton, L.A., Pritchard, G., Teale, C.J., 2015. Cross-sectional survey of antibiotic resistance in Escherichia coli isolated from diseased farm livestock in England and Wales. Epidemiol. Infect. 143(12), 2653–2659.
CLSI, 2022. Performance Standard for Antimicrobial Susceptibility Testing, 33rd edition. Clinical and Laboratory Standard Institute M100S, Wayne, PA, USA.
da Costa, P.M., Oliveira, M., Bica, A., Vaz-Pires, P., Bernardo, F., 2007. Antimicrobial resistance in Enterococcus spp. and Escherichia coli isolated from poultry feed and feed ingredients. Vet. Microbiol. 120(1-2), 122–131.
Dwight, C.H., 2004. Family Enterobacteriaceae. In: Dwight, C.H., MacLachlan, N.J.,Walker, R.L. (Eds.), Veterinary Microbiology, 2nd edition, Blackwell Publishing, pp. 61–68.
EFSA - ECDC, 2022. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2019-2020. EFSA J. 20(3), 7209.
El-Jakee, J.K., Mahmoud, R.M., Samy, A.A., El-Shabrawy, M.A., Effat. M.M., Gad El-Said, W.A., 2012. Molecular characterization of E. coli isolated from chicken, cattle, and buffaloes. Intl. J. Microbiol. Res. 3(1), 64–74.
Feuerstein, A., Scuda, N., Klose, C., Hoffmann, A., Melchner, A., Boll, K., Rettinger, A., Fell, S., Straubinger, R.K., Riehm, J.M., 2022. Antimicrobial resistance, serologic and molecular characterization of E. coli isolated from calves with severe or fatal enteritis in Bavaria, Germany. Antibiotics 11(1), 23.
Ghanbarpour, R., Nazem, M.N., 2010. Prevalence of aerobactin and adhesin genes in Escherichia coli isolates from blood of bacteremic severely ill neonatal calves. Vet. Arhiv 80(2), 185–194.
Gow, S.P., Waldner, C.L., Harel, J., Boerlin, P., 2008. Associations between antimicrobial resistance genes in fecal generic Escherichia coli isolates from cow-calf herds in western Canada. Appl. Environ. Microbiol. 74(12), 3658–3666.
Jaja, I.F., Oguttu, J., Jaja, C.-J.I., Green, E., 2020. Prevalence and distribution of antimicrobial resistance determinants of Escherichia coli isolates obtained from meat in South Africa. Plos One 15(5), e0216914.
Johnson, T.J., Nolan, L.K., 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 73(4), 750–774.
Jouini, A., Vinué, L., Slama, K.B., Saenz, Y., Klibi, N., Hammami, S., Boudabous, A., Torres, C., 2007. Characterization of CTX-M and SHV extended-spectrum β-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J. Antimicrob. Chemother. 60(5), 1137–1141.
Kobayashi, H., Shimada, J., Nakazawa, M., Morozumi, T., Pohjanvirta, T., Pelkonen, S., Yamamoto, K., 2001. Prevalence and characteristics of shiga toxin-producing Escherichia coli from healthy cattle in Japan. Appl. Environ. Microbiol. 67(1),484–489.
Li, D., Liu, B., Chen, M., Guo, D., Guo, X., Liu, F., Feng, L., Wang, L., 2010. A multiplex PCR method to detect 14 Escherichia coli serogroups associated with urinary tract infections. J. Microbiol. Methods. 82(1), 71–77.
Liu, B., Wu, F., Li, D., Beutin, L., Chen, M., Cao, B., Wang, L., 2010. Development of a serogroup-specific DNA microarray for identification of Escherichia coli strains associated with bovine septicemia and diarrhea. Vet. Microbiol. 142(3-4), 373–378.
Liu, Y., Li, H., Chen, X., Tong, P., Zhang, Y., Zhu, M., Su, Z., Yao, G., Li, G., Cai, W., 2020. Characterization of Shiga toxin-producing Escherichia coli isolated from cattle and sheep in Xinjiang province, China, using whole-genome sequencing. Transbound
Emerg. Dis. 69(2),413–422 .
Manzoor, R., Shah, M.I., Asma-ul-husna, Wani, S.A., Pandit, F., Dar, P.A., Mir, M.I., 2015. Prevalence, serodiversity and antibiogram of enterotoxigenic Escherichia coli (ETEC) in diarrhoeic calves and lambs of Kashmir valley (J&K), India. J. Appl. Nat. Sci. 7(1), 477–481.
Maynard, C., Fairbrother, J.M., Bekal, S., Sanschagrin, F., Levesque, R.C., Brousseau, R., Masson, L., Lariviere, S., Harel, J., 2003. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149: K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 47(10), 3214–3221.
Momtaz, H., Karimian, A., Madani, M., Dehkordi, F.S., Ranjbar, R., Sarshar, M., Souod, N., 2013. Uropathogenic Escherichia coli in Iran: serogroup distributions, virulence factors and antimicrobial resistance properties. Ann. Clin. Microbiol. Antimicrob.12(1), 1–12.
Navarro, A., Cauich-Sánchez, P.I., Trejo, A., Gutiérrez, A., Díaz, S.P., Díaz, C.M., Cravioto, A., Eslava, C., 2018. Characterization of diarrheagenic strains of Escherichia coli isolated from cattle raised in three regions of Mexico. Front. Microbiol. 9, 2373.
Nguyen, K.T, Nguyen, T.L., Nguyen, T.P.C, Nguyen, P.K., Ly, T.L.K, Tran, N.B., 2022.Prevalence of antibiotic resistance genes and genetic relationship of Escherichia coli serotype O45, O113, O121, and O157 isolated from cattle in the Mekong Delta, Vietnam. Vet. Integr. Sci. 20(3), 695–707.
Penders, J., Stobberingh, E.E., Savelkoul, P.H., Wolffs, P., 2013. The human microbiome as a reservoir of antimicrobial resistance. Front. Microbiol. 4, 87.
Rajkhowa, S., Hussain, I., Rajkhowa, C., 2009. Detection of heat stable and heat-labile enterotoxin genes of Escherichia coli in diarrhoeic fecal samples of mithun (Bos frontalis) by polymerase chain reaction. J. Appl. Microbiol. 106, 455–458.
Rodas, C., Mamani, R., Blanco, J., Blanco, J.E., Wiklund, G., Svennerholm, A.M., Sjöling, A., Iniguez, V., 2011. Enterotoxins, colonization factors, serotypes and antimicrobial resistance of enterotoxigenic Escherichia coli (ETEC) strains isolated from hospitalized children with diarrhea in Bolivia. Braz. J. Infect. Dis. 15(2), 132–137.
Sharma, R.K., Taku, A.K., Malik, A., Bhat, M.A., Javed, R., Badroo, G.A., Kour, A., 2017. Molecular characterization and antimicrobial profiling of Escherichia coli isolates from diarrheic calves. Indian J. Anim. Sci. 87(12), 1467–1471.
Sorum, H., L’Abée-Lund, T.M., 2002. Antibiotic resistance in food-related bacteria – a result of interfering with the global web of bacterial genetics. Int. J. Food Microbiol.78, 43–56.
Soumet, C., Ermel, G., Fach, P., Colin, P., 1994. Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction. Lett. Appl. Microbiol. 19(5), 294–298.
Spînu, M., Köbölkúti, L., Cadar, D., Niculae, M., Bianu, G., Popescu, S., Lukács, L., 2012. Changes in antibiotic resistance indices of animal Escherichia coli strains with number of isolates. Ann. Rom. Soc. Cell. Biol. 17(1), 361–366.
TCVN 7686:2007 (ISO16654:2001), 2007. Microbiology of food and animal feeding stuffs - Horizontal method for the detection of Escherichia coli O157. Vietnamese Ministry of Science and Technology.
Van, T.T.H., Chin, J., Chapman, T., Tran, L.T., Coloe, P.J., 2008. Safety of raw meat and shellfish in Vietnam: an analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int. J. Food Microbiol. 124(3), 217–223.
Wani, S.A., Hussain, I., Beg, S.A., Rather, M.A., Kabli, Z.A., Mir, M.A., Nishikawa, Y., 2013. Diarrhoeagenic Escherichia coli and salmonellae in calves and lambs in Kashmir absence, prevalence and antibiogram. Rev. Sci. Tech. 32(3), 833–840.
West, D.M., Sprigings, K.A., Cassar, C., Wakeley, P.R., Sawyer, J., Davies, R.H., 2007. Rapid detection of Escherichia coli virulence factor genes using multiplex real-time TaqMan PCR assays. Vet. Microbiol. 122, 323–331.
WHO-World Health Organization, 2016. Critically Important Antimicrobials for Human Medicine, 5th revision. Available online (accessed in October 2022). https://www.who.int/foodsafety/publications/antimicrobials-fifth/en.
Yadegari, Z., Brujeni G.N., Ghorbanpour, R., Moosakhani, F., Lotfollahzadeh, S., 2019. Molecular characterization of enterotoxigenic Escherichia coli isolated from neonatal calves diarrhea. Vet. Res. Forum 10(1), 73–78.
Yamamoto, S., Nakano, M., Kitagawa, W., Tanaka, M., Sone, T., Hirai, K., Asano, K., 2014.Characterization of multi-antibiotic-resistant Escherichia coli isolated from beef cattle in Japan. Microbes Environ. 29(2), 136–144