Counting sheep: human experience vs. Yolo algorithm with drone to determine population https://doi.org/10.12982/VIS.2025.032

Main Article Content

Jordan Ninahuanca Carhuas
Luigüi Andre Cerna Grados
Ide Unchupaico Payano
Edgar Garcia-Olarte
Yakelin Mauricio-Ramos
Carlos Quispe Eulogio
Mohamed M.Hadi Mohamed

Abstract

This study assessed the efficiency of traditional human counting methods and the YOLOv7 algorithm in sheep population management at SAIS Pachacutec S.A.C., Peru. Human counters with varying experience levels (M1-M4) and the YOLOv7 algorithm (M5) were evaluated across six sheep flocks of different sizes. Traditional counting involved "linear pair counting" with human assistants, while the YOLOv7 algorithm utilized drone-captured images for automated counting. Using ANOVA and post-hoc tests, data analysis indicated that 24 months of human experience achieved 100% accuracy, highlighting the importance of expertise in accurate population management. The YOLOv7 algorithm achieved 85% accuracy, affected by factors such as the number of training images, hardware limitations, and training parameters. Despite its lower accuracy, YOLOv7 significantly reduced counting time compared to manual methods, making it a viable option for rapid object counting tasks. Further improvements in algorithm training and computational resources could enhance the algorithm's accuracy. These findings suggest that while human expertise remains critical for precise sheep counting, advancements in computer vision algorithms like YOLOv7 offer promising support, particularly for reducing counting time.

Article Details

How to Cite
Ninahuanca Carhuas, J., Cerna Grados, L. A. ., Unchupaico Payano, I. ., Garcia-Olarte, E. ., Mauricio-Ramos, Y. ., Quispe Eulogio, C. ., & M.Hadi Mohamed, M. . (2024). Counting sheep: human experience vs. Yolo algorithm with drone to determine population: https://doi.org/10.12982/VIS.2025.032. Veterinary Integrative Sciences, 23(2), 1–9. Retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/269700
Section
Research Articles

References

Bailey, D.W., Trotter, M.G., Tobin, C., Thomas, M.G., 2021. Opportunities to apply precision livestock management on rangelands. Front. Sustain. Food. Syst. 5, 611915.

Carhuas, J.N., Paco, J.L.C., Martínez, F.G., Gomez, E.A., Camargo, A.C., Aquino, V.S., De La Cruz, A.R.H., 2023. Inclusion of whey in the diet of fattening rams. Rev. Inv. Vet. Perú. 34(6), e25132-e25132.

Carhuas, J.N., Napoleon, M.S., Villar, F.A., Garcia-Olarte, E., Eulogio, C.Q., Mauricio-Ramos, Y., Payano, I.U., 2024. Urachys anomaly in sheep: incidence and considerations presented in neonatal lambs in the Peru. Online J. Anim. Feed Res. 14(3), 211-217.

Cheng, J., Xiong, H., Cao, Z., Lu, H., 2021. Decoupled two-stage crowd counting and beyond. IEEE Trans. Image. Process. 30(1), 2862-2875.

Dandrifosse, S., Ennadifi, E., Carlier, A., Gosselin, B., Dumont, B., Mercatoris, B., 2022. Deep learning for wheat ear segmentation and ear density measurement: from heading to maturity. Comput. Electron. Agric. 199(1), 107161.

Deng, X., Zhang, S., Shao, Y., Yan, X., 2022. A real-time sheep counting detection system based on machine learning. Inmateh – Agric. Eng. 67(2), 85–94.

Fan, Z., Zhang, H., Zhang, Z., Lu, G., Zhang, Y., Wang, Y., 2022. A survey of crowd counting and density estimation based on convolutional neural network. Neurocomputing. 472(1), 224-251.

Foley, C.M., Fagan, W.F., Lynch, H.J., 2020. Correcting for within-season demographic turnover to estimate the island-wide population of King Penguins (Aptenodytes patagonicus) on South Georgia. Polar. Biol. 43(1), 251-262.

Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B., 2022. A review of Yolo algorithm developments. Procedia. Comput. Sci. 199(1), 1066-1073.

Khan, S.D., Basalamah, S., 2021. Sparse to dense scale prediction for crowd couting in high density crowds. Arab. J. Sci. Eng. 46(4), 3051-3065.

Lu, S., Wang, B., Wang, H., Chen, L., Linjian, M., Zhang, X., 2019. A real-time object detection algorithm for video. Comput. Electr. Eng. 77, 398-408.

Moharram, D., Yuan, X., Li, D., 2023. Tree seedlings detection and counting using a deep learning algorithm. Appl. Sci. 13(2), 895.

Moradeyo, O.M., Olaniyan, A.S., Ojoawo, A.O., Olawale, J.A., Bello, R.W., 2023. YOLOv7 applied to livestock image detection and segmentation tasks in cattle grazing behavior, monitor and intrusions. J. Appl. Sci. Environ. Manag. 27(5), 953-958.

Mpouziotas, D., Karvelis, P., Tsoulos, I., Stylios, C., 2023. Automated wildlife bird detection from drone footage using computer vision techniques. Appl. Sci. 13(13), 7787.

Popek, Ł., Perz, R., Galiński, G., Abratański, A., 2023. Optimization of animal detection in thermal images using YOLO architecture. Int. J. Electron. Telecommun. 69(4), 825-831.

R Team Core, 2019. A language and environment for statistical computing. Available online: https://www.R-project.org/ (Accessed on July 10, 2023).

Rančić, K., Blagojević, B., Bezdan, A., Ivošević, B., Tubić, B., Vranešević, M., Marko, O., 2023. Animal detection and counting from UAV images using convolutional neural networks. Drones. 7(3), 179.

Sarwar, F., Griffin, A., Rehman, S.U., Pasang, T., 2021. Detecting sheep in UAV images. Comput. Electron. Agric. 187(1), 106219.

Senamhi, 2023. National Hydrometeorological Data Serv. Nac. Meteorol. e Hidrol. del Perú. Available online: https://www.senamhi.gob.pe/?p=pronostico-meteorologico (Accessed on July 10, 2023).

Song, S., Liu, T., Wang, H., Hasi, B., Yuan, C., Gao, F., Shi, H., 2022. Using pruning-based YOLOv3 deep learning algorithm for accurate detection of sheep face. Animals. 12(11), 1465.

Takyudin, T., Fitri, I., Yuhandri, Y., 2023. Catfish fry detection and counting using YOLO Algorithm. J. Appl. Inf. Comp. 7(2), 192-197.

Wen, H., Dai, F., 2021. A Study of YOLO Algorithm for multi-target detection. J. Advan. Art. Life. Robot. 2(2), 70-73.

Wu, D., Liao, M.W., Zhang, W.T., Wang, X.G., Bai, X., Cheng, W.Q., Liu, W.Y., 2022. Yolop: you only look once for panoptic driving perception. Mach. Int. Res. 19(6), 550-562.

Xu, J., Liu, W., Qin, Y., Xu, G., 2022. Sheep counting method based on multiscale module deep neural network. IEEE. 10(1), 128293-128303.