Computational multi-epitope based design of a multivalent subunit vaccine against co-infecting African swine fever virus and porcine circovirus type 2 https://doi.org/10.12982/VIS.2025.065
Main Article Content
Abstract
African swine fever virus (ASFV) and porcine circovirus type 2 (PCV2) are two prevalent and economically significant viruses causing high rates of pig mortality and large-scale losses to global pork production. Since there is currently no vaccine simultaneously targeting both viruses, this study aimed to computationally design a safe, stable, and effective multi-epitope based multivalent subunit vaccine against co-infecting ASFV and PCV2. Cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were screened from sequences of the Rep, Cap, and ORF3 PCV2 proteins. PCV2 epitopes predicted to be antigenic, non-allergenic, and non-toxic were linked to previously screened ASFV epitopes and Vibrio vulnificus FlaB flagellin as an adjuvant to create the final vaccine construct, which underwent physicochemical assessment and structure prediction. The vaccine construct was predicted to be stable, soluble, non-cross-reactive, antigenic, and nonallergenic. An immune simulation demonstrated that the vaccine could elicit robust antibody, T-cell, and B-cell responses. The vaccine construct stably docked to TLR5 and formed significant molecular interactions. A 200-ns molecular dynamics simulation showed that the vaccine-TLR5 complex exhibited stability and compactness throughout the run. These results show that the designed vaccine is safe, stable, and effective and warrants experimental validation.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E., 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1-2, 19–25.
Alihodžić, S., Bukvić, M., Elenkov, I.J., Hutinec, A., Koštrun, S., Pešić, D., Saxty, G., Tomašković, L., Žiher, D., 2018. Current trends in macrocyclic drug discovery and beyond-Ro5. In: Witty, J.E., Cox, B. (Eds.), Progress in medicinal chemistry. Elsevier, Amsterdam, pp. 113–233.
Althwaiqeb, S.A., Fakoya, A.O., Bordoni, B., 2023. Histology, B Cell Lymphocyte. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560905/
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410.
Ameri, M., Nezafat, N., Eskandari, S., 2022. The potential of intrinsically disordered regions in vaccine development. Expert. Rev. Vaccines. 21(1), 1–3.
Arai, R., Ueda, H., Kitayama, A., Kamiya, N., Nagamune, T., 2001. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. Des. Sel. 14(8), 529–532.
Arzt, J., White, W.R., Thomsen, B. V., Brown, C.C., 2010. Agricultural diseases on the move early in the third millennium. Vet. Pathol. 47(1), 15–27.
Ayyagari, V.S., Venkateswarulu T.C., Karlapudi, A.P., Srirama, K., 2022. Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: an immunoinformatics approach. J. Biomol. Struct. Dyn. 40(7), 2963–2977.
Barh, D., Barve, N., Gupta, K., Chandra, S., Jain, N., Tiwari, S., Leon-Sicairos, N., Canizalez-Roman, A., Rodrigues dos Santos, A., Hassan, S.S., Almeida, S., Thiago Jucá Ramos, R., Augusto Carvalho de Abreu, V., Ribeiro Carneiro, A., de Castro Soares, S., Luiz de Paula Castro, T., Miyoshi, A., Silva, A., Kumar, A., Narayan Misra, A., Blum, K., Braverman, E.R., Azevedo, V., 2013. Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds. PLoS One. 8(1), e52773.
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., 2000. The protein data bank. Nucleic. Acids. Res. 28(1), 235–242.
Blum, J.S., Wearsch, P.A., Cresswell, P., 2013. Pathways of antigen processing. Annu. Rev. Immunol. 31(1), 443–473.
Buan, A.K.G., Reyes, N.A.L., Pineda, R.N.B., Medina, P.M.B., 2022. In silico design and evaluation of a multi-epitope and multi-antigenic African swine fever vaccine. ImmunoInformatics. 8, 100019.
Buragohain, L., Barman, N.N., Sen, S., Bharali, A., Dutta, B., Choudhury, B., Suresh, K.P., Gaurav, S., Kumar, R., Ali, S., Kumar, S., Singh Malik, Y., 2023. Transmission of African swine fever virus to the wild boars of Northeast India. Vet. Q. 43(1), 1–10.
Calis, J.J.A., Maybeno, M., Greenbaum, J.A., Weiskopf, D., De Silva, A.D., Sette, A., Keşmir, C., Peters, B., 2013. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS. Comput. Biol. 9(10), e1003266.
Chen, S., Li, X., Zhang, L., Zheng, J., Yang, L., Niu, G., Zhang, H., Ren, Y., Qian, J., Sun, C., Ren, L., 2023. Phylogenetic and structural analysis of porcine circovirus type 2 from 2016 to 2021 in Jilin Province, China. Microorganisms. 11(4), 983.
Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., Richardson, D.C., 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta. Crystallogr. D. Biol. Crystallogr. 66(1), 12–21.
Chen, V.B., Wedell, J.R., Wenger, R.K., Ulrich, E.L., Markley, J.L., 2015. MolProbity for the masses–of data. J. Biomol. NMR. 63, 77–83.
Clark, D.P., Pazdernik, N.J., 2016. Immune technology. In: Clark, D.P., Pazdernik, N.J. (Eds.), Biotechnology, Elsevier, London, pp. 181–217.
Clifford, J.N., Høie, M.H., Deleuran, S., Peters, B., Nielsen, M., Marcatili, P., 2022. BepiPred‐3.0: Improved B‐cell epitope prediction using protein language models. Protein. Sci. 31(12), e4497.
Colovos, C., Yeates, T.O., 1993. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein. Sci. 2(9), 1511–1519.
Darwich, L., Balasch, M., Plana-Durán, J., Segalés, J., Domingo, M., Mateu, E., 2003. Cytokine profiles of peripheral blood mononuclear cells from pigs with postweaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigens. J. Gen. Virol. 84(12), 3453–3457.
Darwich, L., Segalés, J., Resendes, A., Balasch, M., Plana-Durán, J., Mateu, E., 2008. Transient correlation between viremia levels and IL-10 expression in pigs subclinically infected with porcine circovirus type 2 (PCV2). Res. Vet. Sci. 84(2), 194–198.
dela Cruz, A., Palmieri, C., Azul, R., Legaspi, C., Lola, S., Barnes, T.S., Parke, C.R., Turni, C., Alawneh, J.I., Baluyut, A.S., Basinang, V.G., David, J.E., de Castro, R.O., Domingo, R., Francisco, E., Ignacio, C., Lapuz, E.L., Mananggit, M.R., Retes, L., Villar, E.C., Blackall, P.J., Meers, J., 2021. Detection of porcine circovirus type 2 (PCV2) in the Philippines and the complexity of PCV2-associated disease diagnosis. Trop. Anim. Health. Prod. 53(3), 371.
Desta, I.T., Porter, K.A., Xia, B., Kozakov, D., Vajda, S., 2020. Performance and its limits in rigid body protein-protein docking. Structure. 28(9), 1071-1081.
Dhanda, S.K., Karosiene, E., Edwards, L., Grifoni, A., Paul, S., Andreatta, M., Weiskopf, D., Sidney, J., Nielsen, M., Peters, B., Sette, A., 2018. Predicting HLA CD4 immunogenicity in human populations. Front. Immunol. 9, 1369.
Díez-Rivero, C.M., Reche, P., 2009. Discovery of conserved epitopes through sequence variability analyses. In: Flower, D.R., Davies, M., Ranganathan, S. (Eds.), Bioinformatics for immunomics. Springer, New York, pp. 95–101.
Dimitrov, I., Flower, D.R., Doytchinova, I., 2013. AllerTOP - a server for in silico prediction of allergens. BMC Bioinformatics. 14, 1-9.
Dolenc, I., Seemüller, E., Baumeister, W., 1998. Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett. 434(3), 357–361.
Doytchinova, I.A., Flower, D.R., 2007. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 8, 1-7.
Du, Q., Zhang, H., He, M., Zhao, X., He, J., Cui, B., Yang, X., Tong, D., Huang, Y., 2019. Interleukin-10 promotes porcine circovirus type 2 persistent infection in mice and aggravates the tissue lesions by duppression of T vell infiltration. Front. Microbiol. 10, 2050.
Dundon, W.G., Franzo, G., Settypalli, T.B.K., Dharmayanti, N.L.P.I., Ankhanbaatar, U., Sendow, I., Ratnawati, A., Sainnokhoi, T., Molini, U., Cattoli, G., Lamien, C.E., 2022. Evidence of coinfection of pigs with African swine fever virus and porcine circovirus 2. Arch. Virol. 167, 207–211.
Elengoe, A., Naser, M., Hamdan, S., 2014. Modeling and docking studies on novel mutants (K71L and T204V) of the ATPase domain of human heat shock 70 kDa protein 1. Int. J. Mol. Sci. 15(4), 6797–6814.
El-Zayat, S.R., Sibaii, H., Mannaa, F.A., 2019. Toll-like receptors activation, signaling, and targeting: an overview. Bull. Natl. Res. Cent. 43(1), 187.
Fagbohun, O.A., Aiki-Raji, C.O., Omotosho, O.O., 2022. Contriving a multi-epitope vaccine against African swine fever utilizing immunoinformatics. Available online: https://www.researchsquare.com/article/rs-1978238/v1.
Food and Agriculture Organization of the United Nations, 2024. African swine fever (ASF) situation update in Asia & Pacific. Available online: https://www.fao.org/animal-health/situation-updates/asf-in-asia-pacific/en.
Foroutan, M., Ghaffarifar, F., Sharifi, Z., Dalimi, A., 2020. Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T cell responses in mice. Comp. Immunol. Microbiol. Infect. Dis. 69, 101413.
Freytag, L.C., Clements, J.D., 2015. Mucosal adjuvants: New developments and challeneges. In: Mestecky, J., Strober, W., Russell, M.W., Kelsall, B.L. Cheroutre, H., Lambrecht, B.N. (Eds.), Mucosal Immunology, Elsevier, London, pp. 1183–1199.
Garnier, J., Gibrat, J.F., Robson, B., 1996. GOR method for predicting protein secondary structure from amino acid sequence. In: Doolittle, R.F. (Ed.), Computer methods or macromolecular sequence analysis, Elsevier, London, pp. 540–553.
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A., 2005. Protein identification and analysis tools on the ExPASy server. In: Walker, J.M. (Ed.), The proteomics protocols handbook. Humana, Totowa, New Jersey, pp. 571–607.
Guo, J., Hou, L., Zhou, J., Wang, D., Cui, Y., Feng, X., Liu, J., 2022. Porcine circovirus type 2 vaccines: commercial application and research advances. Viruses. 14(9), 2005.
Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G.P.S., 2013. In silico approach for predicting toxicity of peptides and proteins. PLoS One. 8(9), e73957.
Haste Andersen, P., Nielsen, M., Lund, O., 2006. Prediction of residues in discontinuous B‐cell epitopes using protein 3D structures. Protein. Sci. 15(11), 2558–2567.
Heo, L., Park, H., Seok, C., 2013. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic. Acids. Res. 41(W1), W384–W388.
Herrera, L.R.D.M., Bisa, E.P., 2021. In silico analysis of highly conserved cytotoxic T-cell epitopes in the structural proteins of African swine fever virus. Vet. World. 14(10), 2625–2633.
Hintze, B.J., Lewis, S.M., Richardson, J.S., Richardson, D.C., 2016. Molprobity’s ultimate rotamer-library distributions for model validation. Proteins: Structure, Function, and Bioinformatics. 84(9), 1177–1189.
Ho, C.S., Lunney, J.K., Ando, A., Rogel‐Gaillard, C., Lee, J.H., Schook, L.B., Smith, D.M., 2009. Nomenclature for factors of the SLA system, update 2008. Tissue Antigens. 73(4), 307–315.
Honorato, R.V., Koukos, P.I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A., Bonvin, A.M.J.J., 2021. Structural biology in the clouds: the WeNMR-EOSC Ecosystem. Front. Mol. Biosci. 8, 729513.
Hsu, C.H., Montenegro, M., Perez, A., 2023. Space–time dynamics of African swine fever spread in the Philippines. Microorganisms. 11(6), 1492.
Juan, A.A., Palma, K.C., Suarez, M., Herrera-Ong, L.D.M., 2022. Immunoinformatics-based identification of highly conserved cytotoxic T-cell epitopes in polyprotein pp220 of African swine fever virus. Biomed. Biotechnol. Res. J. 6(3), 319-325.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis, D., 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873), 583–589.
Jyotisha, Singh, S., Qureshi, I.A., 2022. Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 40(7), 2917–2933.
Karosiene, E., Lundegaard, C., Lund, O., Nielsen, M., 2012. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 64, 177–186.
Kim, G., Park, J.E., Kim, S.J., Kim, Y., Kim, W., Kim, Y.K., Jheong, W., 2023. Complete genome analysis of the African swine fever virus isolated from a wild boar responsible for the first viral outbreak in Korea, 2019. Front. Vet. Sci. 9, 1080397.
Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R., Vajda, S., 2013. How good is automated protein docking? Proteins: Structure, Function, and Bioinformatics. 81(12), 2159–2166.
Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S., 2017. The ClusPro web server for protein–protein docking. Nat. Protoc. 12(2), 255–278.
Kumar, K.M., Karthik, Y., Ramakrishna, D., Balaji, S., Skariyachan, S., Murthy, T.P.K., Sakthivel, K.M., Alotaibi, B.S., Shukry, M., Sayed, S.M., Mushtaq, M., 2023. Immunoinformatic exploration of a multi-epitope-based peptide vaccine candidate targeting emerging variants of SARS-CoV-2. Front. Microbiol. 14, 1251716.
Laskowski, R.A., Jabłońska, J., Pravda, L., Vařeková, R.S., Thornton, J.M., 2018. PDBsum: Structural summaries of PDB entries. Protein. Sci. 27(1), 129–134.
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26(2), 283–291.
Lee, H., Heo, L., Lee, M.S., Seok, C., 2015. GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic. Acids. Res. 43(W1), W431–W435.
Lei, Y., Shao, J., Ma, F., Lei, C., Chang, H., Zhang, Y., 2020. Enhanced efficacy of a multi-epitope vaccine for type A and O foot and-mouth disease virus by fusing multiple epitopes with Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA), a novel TLR4 agonist. Mol. Immunol. 121, 118–126.
Li, H.T., Liu, D., Yang, X.Q., 2011. Identification and functional analysis of a novel single nucleotide polymorphism (SNP) in the porcine Toll like receptor (TLR) 5 gene. Acta. Agric. Scand. A Anim. Sci. 61(4), 161–167.
Linding, R., Russell, R.B., Neduva, V., Gibson, T.J., 2003. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic. Acids. Res. 31(13), 3701–3708.
Liu, H., Zou, J., Liu, R., Chen, J., Li, X., Zheng, H., Li, L., Zhou, B., 2023. Development of a TaqMan-probe-based multiplex real-time PCR for the simultaneous detection of African swine fever virus, porcine circovirus 2, and pseudorabies virus in East China from 2020 to 2022. Vet. Sci. 10(2), 106.
Liu, X., Liu, Y., Zhang, Y., Zhang, F., Du, E., 2020. Incorporation of a truncated form of flagellin (TFlg) into porcine circovirus type 2 virus-like particles enhances immune responses in mice. BMC Vet. Res. 16, 45.
Livingston, B., Crimi, C., Newman, M., Higashimoto, Y., Appella, E., Sidney, J., Sette, A., 2002. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J. Immun. 168(11), 5499–5506.
Lu, H., Zhou, X., Wu, Z., Zhang, X., Zhu, L., Guo, X., Zhang, Q., Zhu, S., Zhu, H., Sun, H., 2021. Comparison of the mucosal adjuvanticities of two Toll-like receptor ligands for recombinant adenovirus-delivered African swine fever virus fusion antigens. Vet. Immunol. Immunopathol. 239, 110307.
Lu, P., Zhou, J., Wei, S., Takada, K., Masutani, H., Okuda, S., Okamoto, K., Suzuki, M., Kitamura, T., Masujin, K., Kokuho, T., Itoh, H., Nagata, K., 2023. Comparative genomic and transcriptomic analyses of African swine fever virus strains. Comput. Struct. Biotechnol. J. 21, 4322–4335.
Luka, P.D., Adedeji, A.J., Jambol, A.R., Ifende, I. V., Luka, H.G., Choji, N.D., Weka, R., Settypalli, T.B.K., Achenbach, J.E., Cattoli, G., Lamien, C.E., Molini, U., Franzo, G., Dundon, W.G., 2022. Coinfections of African swine fever virus, porcine circovirus 2 and 3, and porcine parvovirus 1 in swine in Nigeria. Arch. Virol. 167(12), 2715–2722.
Magnan, C.N., Randall, A., Baldi, P., 2009. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics. 25(17), 2200–2207.
Maki-Yonekura, S., Yonekura, K., Namba, K., 2009. L-type straight flagellar filament made of full-length flagellin. Available online: https://pdbj.org/mine/summary/3a5x.
Maki-Yonekura, S., Yonekura, K., Namba, K., 2010. Conformational change of flagellin for polymorphic supercoiling of the flagellar filament. Nat. Struct. Mol. Biol. 17(4), 417–422.
Maldonado, J., Ségales, J., Calsamiglia, M., Llopart, D., Sibila, M., Lapus, Z., Riera, P., Artigas, C., 2004. Postweaning multisystemic wasting syndrome (PMWS) in the Philippines: Porcine circovirus type 2 (PCV2) detection and characterization. J. Vet. Med. Sci. 66(5), 533–537.
Maleki, A., Russo, G., Parasiliti Palumbo, G.A., Pappalardo, F., 2022. In silico design of recombinant multi-epitope vaccine against influenza A virus. BMC Bioinformatics. 22, 617.
Meng, X.J., 2013. Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci. 1(1), 43–64.
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., Steinegger, M., 2022. ColabFold: making protein folding accessible to all. Nat. Methods. 19(6), 679–682.
Mishra, S., 2020. Designing of cytotoxic and helper T cell epitope map provides insights into the highly contagious nature of the pandemic novel coronavirus SARS-CoV-2. R. Soc. Open. Sci. 7(9), 201141.
Modis, Y., Zhou, K., Kanai, R., Lee, P., Wang, H.W., 2011. Homology model of human Toll-like receptor 5 fitted into an electron microscopy single particle reconstruction. Available online: https://www.rcsb.org/structure/3j0a.
Nagpal, G., Usmani, S.S., Dhanda, S.K., Kaur, H., Singh, S., Sharma, M., Raghava, G.P.S., 2017. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci. Rep. 7, 42851.
Orosco, F.L., Espiritu, L.M., 2024. Navigating the landscape of adjuvants for subunit vaccines: recent advances and future perspectives. Int. J. Appl. Pharmaceut. 10, 18–32.
Ouyang, T., Zhang, X., Liu, X., Ren, L., 2019. Co-infection of swine with porcine circovirus type 2 and other swine viruses. Viruses. 11(2), 185.
Pang, M., Tu, T., Wang, Y., Zhang, P., Ren, M., Yao, X., Luo, Y., Yang, Z., 2022. Design of a multi-epitope vaccine against Haemophilus parasuis based on pan-genome and immunoinformatics approaches. Front. Vet. Sci. 9, 1053198.
Rajput, V.S., Sharma, R., Kumari, A., Vyas, N., Prajapati, V., Grover, A., 2022. Engineering a multi epitope vaccine against SARS-CoV-2 by exploiting its non structural and structural proteins. J. Biomol. Struct. Dyn. 40(19), 9096–9113.
Rapin, N., Lund, O., Bernaschi, M., Castiglione, F., 2010. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One. 5(4), e9862.
Read, R.J., Chavali, G., 2007. Assessment of CASP7 predictions in the high accuracy template-based modeling category. Proteins. 69(S8), 27–37.
Reynisson, B., Alvarez, B., Paul, S., Peters, B., Nielsen, M., 2020. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic. Acids. Res. 48(W1), W449–W454.
Ros-Lucas, A., Correa-Fiz, F., Bosch-Camós, L., Rodriguez, F., Alonso-Padilla, J., 2020. Computational analysis of african swine fever virus protein space for the design of an epitope-based vaccine ensemble. Pathogens. 9(12), 1078.
Rostaminia, S., Aghaei, S.S., Farahmand, B., Nazari, R., Ghaemi, A., 2021. Computational design and analysis of a multi-epitope against influenza A virus. Int. J. Pept. Res. Ther. 27, 2625–2638.
Rowaiye, A.B., Oli, A.N., Asala, M.T., Nwonu, E.J., Njoku, M.O., Asala, O.O., Salami, S.A., Mbachu, N.A., 2023. Design of multiepitope vaccine candidate from a major capsid protein of the African swine fever virus. Vet. Vaccine. 2(1), 100013.
Saha, S., Raghava, G.P.S., 2006. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins. 65(1), 40–48.
Saha, S., Raghava, G.P.S., 2007. Prediction methods for B-cell epitopes. In: Flower, D.R. (Ed.), Immunoinformatics: predicting immunogenicity in silico. Humana, Totowa, New Jersey, pp. 387–394.
Šali, A., Blundell, T.L., 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234(3), 779–815
Sargsyan, K., Grauffel, C., Lim, C., 2017. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory. Comput. 13(4), 1518–1524.
Sarkar, B., Ullah, M.A., Araf, Y., Rahman, M.S., 2020. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Inform. Med. Unlocked. 21, 100478.
Savar, N., Bouzari, S., 2014. In silico study of ligand binding site of toll-like receptor 5. Adv. Biomed. Res. 3(1), 41.
Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., Tse, T., Wang, J., Williams, R., Trawick, B.W., Pruitt, K.D., Sherry, S.T., 2022. Database resources of the national center for biotechnology information. Nucleic. Acids. Res. 50(D1), D20–D26.
Schrödinger, 2023. PyMOL v2.5.5 (Version 2.5.5). Available online: https://pymol.org/.
Shen, C.H., 2023. Diagnostic molecular biology, (2nd edition). Elsevier, London.
Simbulan, A.M., Banico, E.C., Sira, E.M.J.S., Odchimar, N.M.O., Orosco, F.L., 2024. Immunoinformatics-guided approach for designing a pan-proteome multi-epitope subunit vaccine against African swine fever virus. Sci. Rep. 14, 1354.
Singh, H., Ansari, H.R., Raghava, G.P.S., 2013. Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PLoS One. 8, e62216.
Singh, H., Gupta, S., Gautam, A., Raghava, G.P.S., 2015. Designing B-cell epitopes for immunotherapy and subunit vaccines. In: Houen, G. (Ed.), Peptide antibodies: methods and protocols. Humana, New York, pp. 327–340.
Sippl, M.J., 1993. Recognition of errors in three‐dimensional structures of proteins. Proteins. 17(4), 355–362.
Sira, E.M.J.S., Banico, E.C., Fajardo, L.E., Odchimar, N.M., Simbulan, A.M., Orosco, F.L., 2025. Current strategies, advances, and challenges in multi-epitope subunit vaccine development for African swine fever virus. Vet. Integ. Sci. 23(1), 1–48.
Stranzl, T., Larsen, M.V., Lundegaard, C., Nielsen, M., 2010. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics. 62, 357–368.
Sumitha, A., Devi, P.B., Hari, S., Dhanasekaran, R., 2020. Covid-19 - In silico structure prediction and molecular docking studies with doxycycline and quinine. Biomed. pharmacol. J. 13(3), 1185–1193.
Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38(7), 3022–3027.
Tarrahimofrad, H., Rahimnahal, S., Zamani, J., Jahangirian, E., Aminzadeh, S., 2021. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Sci. Rep. 11, 24485.
Umar, A., Haque, A., Alghamdi, Y.S., Mashraqi, M.M., Rehman, A., Shahid, F., Khurshid, M., Ashfaq, U.A., 2021. Development of a candidate multi-epitope subunit vaccine against Klebsiella aerogenes: subtractive proteomics and immuno-informatics approach. Vaccines (Basel). 9(11), 1373.
Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R., Kozakov, D., 2017. New additions to the ClusPro server motivated by CAPRI. Proteins. 85(3), 435–444.
Vangone, A., Bonvin, A.M., 2015. Contacts-based prediction of binding affinity in protein–protein complexes. Elife. 4, e07454.
Wiederstein, M., Sippl, M.J., 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic. Acids. Res. 35, W407–W410.
World Organisation for Animal Health, 2024. African swine fever (ASF) – situation report 53. Available online: https://www.woah.org/app/uploads/2024/06/asf-report53.pdf.
Xue, L.C., Rodrigues, J.P., Kastritis, P.L., Bonvin, A.M., Vangone, A., 2016. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics. 32(23), 3676–3678.
Yadav, D.K., Yadav, N., Khurana, S.M.P., 2020. Vaccines: present status and applications. In: Verma, A.S., Singh, A. (Eds.), Animal biotechnology: models in discovery and translation. Elsevier, London, pp. 523–542.
Yang, Z., Zeng, X., Zhao, Y., Chen, R., 2023. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct. Target. Ther. 8, 115.
Yao, B., Zhang, L., Liang, S., Zhang, C., 2012. SVMTriP: A method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One. 7(9), e45152.
Zajonc, D.M., 2020. Unconventional peptide presentation by classical MHC class i and implications for T and NK cell activation. Int. J. Mol. Sci. 21(20), 7561.
Zhang, G., Liu, W., Yang, S., Song, S., Ma, Y., Zhou, G., Liang, X., Miao, C., Li, J., Liu, Y., Shao, J., Chang, H., 2023. Evaluation of humoral and cellular immune responses induced by a cocktail of recombinant African swine fever virus antigens fused with OprI in domestic pigs. Virol. J. 20, 104.
Zhang, J.M., An, J., 2007. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 45(2), 27–37.
Zhang, N., Qi, J., Feng, S., Gao, F., Liu, J., Pan, X., Chen, R., Li, Q., Chen, Z., Li, X., Xia, C., Gao, G.F., 2011a. Crystal structure of swine major histocompatibility complex class I SLA-1*0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides. J. Virol. 85(22), 11709–11724.
Zhang, X., Guan, X., Wang, Q., Wang, X., Yang, X., Li, S., Zhao, X.T., Yuan, M., Liu, X., Qiu, H.J., Li, Y., 2023. Identification of the p34 protein of African swine fever virus as a novel viral antigen with protection potential. Viruses. 16(1), 38.
Zhao, X., Wang, X., Yuan, M., Zhang, X., Yang, X., Guan, X., Li, S., Ma, J., Qiu, H.-J., Li, Y., 2023. Identification of two novel T cell epitopes on the E2 protein of classical swine fever virus C-strain. Vet. Microbiol. 284, 109814.
Zhou, K., Kanai, R., Lee, P., Wang, H.-W., Modis, Y., 2012. Toll-like receptor 5 forms asymmetric dimers in the absence of flagellin. J. Struct. Biol. 177(2), 402–409.