The Immunomodulatory potential of protein hydrolysate by-products derived from skipjack (Katsuwonus pelamis (Linnaeus, 1758)) against nicotinamide-streptozotocin induced diabetic rat ้https://doi.org/10.12982/VIS.2026.006

Main Article Content

Putut Har Riyadi
Eko Susanto
Tri Winarni Agustini
Mochammad Fitri Atho'illah
Siti Nur Arifah
Muhaimin Rifa'i

Abstract

Type 2 diabetes mellitus (T2DM) is determined by glucose intolerance and low-grade chronic inflammation that might be partially controlled using nutritional interventions. Skipjack tuna (Katsuwonus pelamis) by-products are processed by enzyme hydrolysis, providing many essential elements with health-promoting benefits. Herein, the study aimed to investigate the effect of dietary supplementation of fish protein hydrolysate (FPH) derived from skipjack tuna on diabetes rat models. Twenty-five male Sprague-Dawley rats were separated into five groups: (1) normal group, (2) DM (diabetes mellitus) group, (3) DM + Imunos 0.8 g/kg BW (positive control) group, (4) DM + FPH 0.8 g/kg BW, and (5) DM + FPH 1.6 g/kg BW. The DM groups consecutively gave a high-fat diet (HFD) for twelve weeks. Nicotinamide (NA) (120 mg/kg BW) and streptozotocin (60 mg/kg BW) were then injected to induce diabetic animal models. The treatment was given orally each day for two weeks. Fasting blood glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-β, GLUT4, and malondialdehyde (MDA) were measured. Our result suggested that FPH administration increased the body weight of DM rats significantly (p<0.05). FPH also reduced the fasting blood glucose, HOMA-IR, HOMA-β, improved insulin and GLUT4 levels, and decreased MDA significantly (p<0.05) than DM groups. Our finding suggests FPH derived from skipjack tuna ameliorates DM progression by controlling glucose homeostasis and oxidative stress. Biopeptides from FPH might be a promising candidate as food nutraceuticals that can be involved in DM management.

Article Details

How to Cite
Riyadi, P. H., Susanto, E., Agustini, T. W., Atho’illah, M. F., Arifah, S. N., & Rifa’i, M. (2025). The Immunomodulatory potential of protein hydrolysate by-products derived from skipjack (Katsuwonus pelamis (Linnaeus, 1758)) against nicotinamide-streptozotocin induced diabetic rat : ้https://doi.org/10.12982/VIS.2026.006. Veterinary Integrative Sciences, 24(1), 1–12. retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/272441
Section
Research Articles

References

Cao, W., Zou, J., Gao, M., Huang, J., Li, Y., Li, N., Qian, L., Zhang, Y., Ji, M., Liu, Y., 2024. A comparative study of the relationship between time in range assessed by self-monitoring of blood glucose and continuous glucose monitoring with microalbuminuria outcome, HOMA-IR and HOMA-β test. J. Diabetes Complications 38, 108831.

Chaturvedi, R., Desai, C., Patel, P., Shah, A., Dikshit, R.K., 2018. An evaluation of the impact of antidiabetic medication on treatment satisfaction and quality of life in patients of diabetes mellitus. Perspect. Clin. Res. 9, 15–22.

Chijiokwu, E.A., Nwangwa, E.K., Oyovwi, M.O., Naiho, A.O., Emojevwe, V., Ohwin, E.P., Ehiwarior, P.A., Ojugbeli, E.T., Nwabuoku, U.S., Oghenetega, O.B., Ogheneyoma, O.O., 2022. Intermittent fasting and exercise therapy abates STZ-induced diabetotoxicity in rats through modulation of adipocytokines hormone, oxidative glucose metabolic, and glycolytic pathway. Physiol. Rep. 10, e15279.

Daskalaki, M.G., Axarlis, K., Tsoureki, A., Michailidou, S., Efraimoglou, C., Lapi, I., Kolliniati, O., Dermitzaki, E., Venihaki, M., Kousoulaki, K., Argiriou, A., Tsatsanis, C., 2023. Fish-derived protein hydrolysates increase insulin sensitivity and alter intestinal microbiome in high-fat-induced obese mice. Mar. Drugs. 21, 343.

Forouhi, N.G., Wareham, N.J., 2019. Epidemiology of diabetes. Med. (Baltimore). 47, 22–27.

Fungfuang, W., Lert-Amornpat, T., Maketon, C., 2016. Effects of black ginger (Kaempferia parviflora) on thetesticular function in streptozotocin-induced diabetic male rats. Vet. Integr. Sci. 14, 95–107.

Gofur, A., Witjoro, A., Widya Ningtiyas, E., Setyowati, E., Aminatul Mukharromah, S., Suhartini, S., Fitri Athoillah, M., Rahayu Lestari, S., 2018. The ameliorative effect of black soybean and purple sweet potato to improve sperm quality through suppressing reactive oxygen species (ROS) in type 2 diabetes mellitus rat (Rattus novergicus). Sci. Asia. 44, 303.

Harnedy, P.A., Parthsarathy, V., McLaughlin, C.M., O’Keeffe, M.B., Allsopp, P.J., McSorley, E.M., O’Harte, F.P.M., FitzGerald, R.J., 2018. Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. J. Funct. Foods. 40, 137–145.

Harnedy-Rothwell, P.A., McLaughlin, C.M., O’Keeffe, M.B., Le Gouic, A.V., Allsopp, P.J., McSorley, E.M., Sharkey, S., Whooley, J., McGovern, B., O’Harte, F.P.M., FitzGerald, R.J., 2020. Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity. Food. Res. Int. 131, 108989.

Jiménez-Maldonado, A., García-Suárez, P.C., Rentería, I., Moncada-Jiménez, J., Plaisance, E.P., 2020. Impact of high-intensity interval training and sprint interval training on peripheral markers of glycemic control in metabolic syndrome and type 2 diabetes. Biochim. Biophys. Acta. Mol. Basis. Dis. 1866, 165820.

Klec, C., Ziomek, G., Pichler, M., Malli, R., Graier, W.F., 2019. Calcium signaling in ß-cell physiology and pathology: a revisit. Int. J. Mol. Sci. 20, 6110.

Klomklao, S., Benjakul, S., 2017. Utilization of tuna processing by-products: protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera: skipjack tuna viscera hydrolysate. J. Food Process. Preserv. 41, e12970.

Kusuma, R.J., Ermamilia, A., Halimah, S.N., Pradani, N.F., Sholikha, I., 2021. Selar (Selar crumenophthalmus) fish protein hydrolysate has antidiabetic properties possibly through GLP-1. Curr. Nutr. Food. Sci. 17, 516–522.

IDF, 2021. IDF diabetes atlas, 10th edition. ed. International Diabetes Federation, Brussels.

McLaughlin, C.M., Sharkey, S.J., Harnedy-Rothwell, P., Parthsarathy, V., Allsopp, P.J., McSorley, E.M., FitzGerald, R.J., O’Harte, F.P.M., 2020. Twice daily oral administration of Palmaria palmata protein hydrolysate reduces food intake in streptozotocin induced diabetic mice, improving glycaemic control and lipid profiles. J. Funct. Foods 73, 104101.

McNay, E.C., Pearson-Leary, J., 2020. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp. Neurol. 323, 113076.

Mukai, E., Fujimoto, S., Inagaki, N., 2022. Role of reactive oxygen species in glucose metabolism disorder in diabetic pancreatic β-cells. Biomolecules. 12, 1228.

Pintapagung, T., Asawapattanakul, T., Buasrithong, N., Phunnanon, M., Thaingkhan, W., 2020. Effect of oral administration of chia (Salvia hispanica L.) seed extract on wound healing property in diabetic mice. Vet. Integr. Sci. 18, 153–171.

Riyadi, P.H., Atho’illah, M.F., Tanod, W.A., Rahmawati, I.S., 2020. Tilapia viscera hydrolysate extract alleviates oxidative stress and renal damage in deoxycorticosterone acetate-salt-induced hypertension rats. Vet. World. 13, 2477–2483.

Riyadi, P.H., Romadhon, R., Anggo, A.D., Atho’illah, M.F., Rifa’i, M., 2022. Tilapia viscera protein hydrolysate maintain regulatory T cells and protect acute lung injury in mice challenged with lipopolysaccharide. J. King Saud Univ. Sci. 34, 102020.

Riyadi, P.H., Susanto, E., Agustini, T.W., Arifin, M.H., Prasetyo, D.Y.B., 2023. Bioactive peptide prediction of skipjack tuna (Katsuwonus pelamis) hydrolysates using in silico. ARPN J. Eng. Appl. Sci. 18, 1624–1633.

Shekoohi, N., Carson, B.P., Fitzgerald, R.J., 2024. Antioxidative, glucose management, and muscle protein synthesis properties of fish protein hydrolysates and peptides. J. Agric. Food. Chem. 72, 21301–21317.

Shi, C., Hu, D., Wei, L., Yang, X., Wang, S., Chen, J., Zhang, Y., Dong, X., Dai, Z., Lu, Y., 2024. Identification and screening of umami peptides from skipjack tuna (Katsuwonus pelamis) hydrolysates using EAD/CID based micro-UPLC-QTOF-MS and the molecular interaction with T1R1/T1R3 taste receptor. J. Chromatogr. A. 1734, 465290.

Sila, A., Bougatef, A., 2016. Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. J. Funct. Foods. 21, 10–26.

Suryasa, I.W., Rodríguez-Gámez, M., Koldoris, T., 2021. Health and treatment of diabetes mellitus. Int. J. Health Sci. 5, i–v.

Taheri, A., Bakhshizadeh Gashti, A., 2020. Antioxidant and ACE inhibitory activities of kawakawa (Ethynes affinis) protein hydrolysate produced by skipjack tuna pepsin. J. Aquat. Food Prod. Technol. 29, 148–166.

Wan, P., Cai, B., Chen, H., Chen, D., Zhao, X., Yuan, H., Huang, J., Chen, X., Luo, L., Pan, J., 2023. Antidiabetic effects of protein hydrolysates from Trachinotus ovatus and identification and screening of peptides with α-amylase and DPP-IV inhibitory activities. Curr. Res. Food Sci. 6, 100446.

Wang, Y., Gagnon, J., Nair, S., Sha, S., 2019. Herring milt protein hydrolysate improves insulin resistance in high-fat-diet-induced obese male C57BL/6J Mice. Mar. Drugs. 17, 456.

Wong, F.C., Xiao, J., Ong, M.G.L., Pang, M.J., Wong, S.J., Teh, L.K., Chai, T.T., 2019. Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments. Food Chem. 271, 614–622.

Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J., Liao, B., He, H., 2018. Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chem. 248, 346–352.

Zhang, L., Zhao, G.X., Zhao, Y.Q., Qiu, Y.T., Chi, C.F., Wang, B., 2019. Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna (Katsuwonus pelamis) head. Antioxidants. 8, 318.

Zheng, Z., Si, D., Ahmad, B., Li, Z., Zhang, R., 2018. A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate. Food Res. Int. 106, 410–419.

Zhou, X., Chai, L., Wu, Q., Wang, Y., Li, S., Chen, J., 2021. Antidiabetic properties of bioactive components from fish and milk. J. Funct. Foods. 85, 104669.

Zhu, C., Zhang, W., Mu, B., Zhang, F., Lai, N., Zhou, J., Xu, A., Liu, J., Li, Y., 2017. Effects of marine collagen peptides on glucose metabolism and insulin resistance in type 2 diabetic rats. J. Food Sci. Technol. 54, 2260–2269.