Exploring the synergy of CRISPR-Cas9 and IVF for Precision Livestock Production: A Review of Modern Advancements https://doi.org/10.12982/VIS.2026.039

Main Article Content

kaleem Ullah

Abstract

Livestock plays a crucial role in global agricultural economy. A sustainable livestock production is the key player contributing to food security. Reproduction plays a central role in ensuring a smooth Livestock production. The era of 1980s marked a significant cornerstone in Livestock reproduction by the incorporation of in vitro fertilization (IVF), making it easier to develop genetically superior offspring. The precision and efficiency of genetic modifications was further enhanced by the integration of IVF with CRISPR/Cas9 technology. The technological union of CRISPR-Cas9 genome editing and in vitro fertilization (IVF) has brought revolutionary changes to livestock biotechnology programs. The combined strategies produce accurate, fast genetic progress through robust enhancements in numerous livestock species. IVF has established itself as a tool for breeding better livestock for increased reproductive success but joining it with CRISPR-Cas9 allows breeders to manipulate embryonic genomes precisely. This study investigates the various implementation methods of this technology including manipulation in the genome through knockout (KO) or knock-in (KI) processes to generate disease-resistant variants combined with production improvements, milk-allergen reduction and creation of transgenic animal research models for pharmaceutical industries. The article examines technical developments improving embryo editing tools alongside multiplex gene modification methods and innovation in IVF protocols. This research surveys both ethical matters alongside the effects; genome-edited livestock will have on regulatory environments. The article identifies potential future trends in this dual-platform biotechnology system, highlighting its role as a critical tool for developing precision-oriented, sustainable animal husbandry

Article Details

How to Cite
Ullah , kaleem . (2025). Exploring the synergy of CRISPR-Cas9 and IVF for Precision Livestock Production: A Review of Modern Advancements: https://doi.org/10.12982/VIS.2026.039. Veterinary Integrative Sciences, 24(2), 1–21. retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/275019
Section
Review Article

References

Aboelhassan, D.M., Abozaid, H., 2024. Opportunities for crispr-cas9 application in farm animal genetic improvement. Mol. Biol. Rep. 51(1), 1108.

Ahmad, F., 2025. Historical perspectives of cutting-edge genome editing techniques. In: Al-Khayri, J.M., Sattar, M.N., Sopory, S.K., Jain, S.M. (Eds.), Genome editing for crop improvement: Theory and Methodology. CABI, Nosworthy Way, Wallingford, Oxfordshire, pp. 1–16.

Allais-Bonnet, A., Richard, C., André, M., Gelin, V., Deloche, M.-C., Lamadon, A., Morin, G., Mandon-Pépin, B., Canon, E., Thépot, D., Laubier, J., Moazami-Goudarzi, K., Laffont, L., Dubois, O., Fassier, T., Congar, P., Lasserre, O., Aguirre-Lavin, T., Vilotte, J.-L., Pailhoux, E., 2025. CRISPR/Cas9-editing of PRNP in alpine goats. Vet. Res. 56, 11.

Anyaegbunam, N.J., Okpe, K.E., Bello, A.B., Ajanaobionye, T.I., Mgboji, C.C., Olonade, A., Anyaegbunam, Z.K.G., Mba, I.E., 2025. Leveraging innovative diagnostics as a tool to contain superbugs. Antonie van Leeuwenhoek. 118(4), 63.

Baruselli, P.S., Abreu, L.A., Menchaca, A., Bó, G.A., 2025. The future of beef production in south america. Theriogenology. 231, 21–28.

Berghof, T.V.L., Poppe, M., Mulder, H.A., 2019. Opportunities to improve resilience in animal breeding programs. Front. Genet. 14(9), 692.

Briski, O., La Motta, G.E., Ratner, L.D., Allegroni, F.A., Pillado, S., Álvarez, G., Gutierrez, B., Tarragona, L., Zaccagnini, A., Acerbo, M., Ciampi, C., Fernández-Martin, R., Salamone, D.F., 2024. Comparison of ICSI, IVF, and in vivo derived embryos to produce CRISPR-Cas9 gene-edited pigs for xenotransplantation. Theriogenology. 220, 43–55.

Burger, B.T., Beaton, B.P., Campbell, M.A., Brett, B.T., Rohrer, M.S., Plummer, S., Barnes, D., Jiang, K., Naswa, S., Lange, J., Ott, A., Alger, E., Rincon, G., Rounsley, S., Betthauser, J., Mtango, N.R., Benne, J.A., Hammerand, J., Durfee, C.J., Rotolo, M.L., Cameron, P., Lied, A.M., Irby, M.J., Nyer, D.B., Fuller, C.K., Gradia, S., Kanner, S.B., Park, K.E., Waters, J., Simpson, S., Telugu, B.P., Salgado, B.C., Brandariz-Nuñez, A., Rowland, R.R.R., Culbertson, M., Rice, E., Cigan, A.M., 2024. Generation of a commercial-scale founder population of porcine reproductive and respiratory syndrome virus resistant pigs using CRISPR-Cas. CRISPR J. 7(1), 12–28.

Busch-Vishniac, I., Busch, L., Tietjen, J.S., 2024. Emmanuelle Charpentier and Jennifer Doudna. In: Busch-Vishniac, I., Busch, L., Tietjen, J.S. (Eds.), Women in engineering and science. Springer Nature, Switzerland, pp. 451–460.

Cetin, B., Erendor, F., Eksi, Y.E., Sanlioglu, A.D., Sanlioglu, S., 2025. Advancing CRISPR genome editing into gene therapy clinical trials: Progress and future prospects. Expert. Rev. Mol. Med. 27, e16.

Chen, J., Wang, J., Zhao, H., Tan, X., Yan, S., Zhang, H., Wang, T., Tang, X., 2025. Molecular breeding of pigs in the genome editing era. Genet. Sel. Evol. 57(1), 12.

Chen, M.M., Zhao, Y., Yu, K., Xu, X.L., Zhang, X.S., Zhang, J.L., Wu, S.J., Liu, Z.M., Yuan, Y.M., Guo, X.F., Qi, S.Y., Yi, G., Wang, S.Q., Li, H.X., Wu, A.W., Liu, G.S., Deng, S.L., Han, H.B., Lv, F.H., Lian, D., Lian, Z.X., 2024. A MSTNDel73c mutation with FGF5 knockout sheep by CRISPR/Cas9 promotes skeletal muscle myofiber hyperplasia. Elife. 12, RP86827.

Clarissa, E.M., Karmacharya, M., Choi, H., Kumar, S., Cho, Y.K., 2025. Nature inspired delivery vehicles for CRISPR‐based genome editing. Small. 3, e2409353.

Cuellar, C.J., Amaral, T.F., Rodriguez‐Villamil, P., Ongaratto, F., Martinez, D.O., Labrecque, R., Losano, J.D.d.A., Estrada‐Cortés, E., Bostrom, J.R., Martins, K., Rae, D.O., Block, J., Hoorn, Q.A., Daigneault, B.W., Merriam, J., Lohuis, M., Dikmen, S., Bittar, J.H.J., Maia, T.S., Carlson, D.F., Larson, S., Sonstegard, T.S., Hansen, P.J., 2024. Consequences of gene editing of PRLR on thermotolerance, growth, and male reproduction in cattle. FASEB Bioadv. 6(8), 223–234.

de Almeida Camargo, L.S., Pereira, J.F., 2022. Genome-editing opportunities to enhance cattle productivity in the tropics. CABI Agri. Biosci. 3(1), 8.

Eski, N., Huda, A., Jacqueline, C., Yakup, B., 2025. Exploring the role of crispr-cas9 in genetic engineering: Advancements, applications, and ethical issue. London J. Interdiscip. Sci. 4, 38–51.

Fu, Y.-W., Dai, X.-Y., Wang, W.-T., Yang, Z.-X., Zhao, J.-J., Zhang, J.-P., Wen, W., Zhang, F., Oberg, K.C., Zhang, L., Cheng, T., Zhang, X.-B., 2021. Dynamics and competition of CRISPR–Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic. Acids. Res. 49(2), 969–985.

Garcia, A., 2023. 50 gene editing applications in livestock production. J. Anim. Sci. 101, 43–44.

Gim, G.-M., Eom, K.-H., Kwon, D.-H., Jung, D.-J., Kim, D.-H., Yi, J.-K., Ha, J.-J., Lee, J.-H., Lee, S.-B., Son, W.-J., Yum, S.-Y., Lee, W.-W., Jang, G., 2023. Generation of double knockout cattle via CRISPR-Cas9 ribonucleoprotein (RNP) electroporation. J. Anim. Sci. Biotechnol. 14, 103.

Glass, Z., Lee, M., Li, Y., Xu, Q., 2018. Engineering the delivery system for crispr-based genome editing. Trends. Biotechnol. 36(2), 173–185.

Hennig, S.L., Owen, J.R., Lin, J.C., Young, A.E., Ross, P.J., Van Eenennaam, A.L., Murray, J.D., 2020. Evaluation of mutation rates, mosaicism and off target mutations when injecting Cas9 MRNA or protein for genome editing of bovine embryos. Sci. Rep. 10(1), 22309.

Hill, W.G., Mulder, H.A., 2010. Genetic analysis of environmental variation. Genet. Res. 92, 381–395.

Hille, F., Charpentier, E., 2016. CRISPR-Cas: Biology, mechanisms and relevance. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150496.

Hufana-Duran, D., Chaikhun-Marcou, T., Duran, P.G., Atabay, E.P., Nguyen, H.T., Atabay, E.C., Nguyen, U.T., Nguyen, H.T., Hiew, M.W.H., Punyawai, K., Ginting, N., Parnpai, R., 2025. Future of reproductive biotechnologies in water buffalo in Southeast Asian countries. Theriogenology. 233, 123–130.

Jain, M.S., Srikruthi, K., Goudanavar, P., Naveen, N.R., 2024. Navigating the frontier: Comprehensive insights into crispr technology advancements, delivery strategies, and ethical considerations in cancer research. Oral. Oncology. Reports. 9, 100224.

Kabu, M., Tunç, A.C., 2024. Current Research and Treatment in Animals. Available online: https://www.livredelyon.com/veterinary-medicine/current-research-and-treatment-in-animals_765.

Kamel, A.M., Abd El-Hamid, I.S., Khalifa, M., Shaker, Y.M., Rateb, S.A., 2024. Influence of incorporating L-carnitine or Moringa oleifera leaves extract into semen diluent on cryosurvival and in vitro fertilization competence of buck sperm. Anim. Reprod. Sci. 268, 107562.

Kaushik, A., 2024. CRISPR-Cas9: advancing veterinary science and revolutionizing animal health. Bio. Vet. Innovator. Magazine. 1(5), 46-51.

Kropf, M., 2024. The ethically significant difference between dual use and slippery slope arguments, in relation to CRISPR-Cas9: Philosophical considerations and ethical challenges. Res. Ethics. 21(2), 346–361.

Kumar, D., Tiwari, M., Goel, P., Singh, M.K., Selokar, N.L., Palta, P., 2024. Comparative transcriptome profile of embryos at different developmental stages derived from somatic cell nuclear transfer (SCNT) and in-vitro fertilization (IVF) in riverine buffalo (Bubalus bubalis). Vet. Res. Commun. 48(4), 2457–2475.

Kurata, M., Wolf, N.K., Lahr, W.S., Weg, M.T., Kluesner, M.G., Lee, S., Hui, K., Shiraiwa, M., Webber, B.R., Moriarity, B.S., 2018. Highly multiplexed genome engineering using CRISPR/Cas9 gRNA arrays. PLoS One. 13(9), e0198714.

Lange, V., Kappel, K., 2022. CRISPR Gene-therapy: a critical review of ethical concerns and a proposal for public decision-making. Can. J. Bioeth. 5(2), 78-87.

Leal, A., Herreno-Pachón, A., Benincore-Flórez, E., Karunathilaka, A., Tomatsu, S., 2024. Current strategies for increasing Knock-In efficiency in CRISPR/Cas9-based approaches. Int. J. Mol. Sci. 25(5), 2456.

Ledesma, A.V., Van Eenennaam, A.L., 2024. Global status of gene edited animals for agricultural applications. Vet. J. 305, 106142.

Li, D., Guo, R., Chen, F., Wang, J., Wang, F., Wan, Y., 2024a. Genetically engineered goats as efficient mammary gland bioreactors for production of recombinant human neutrophil peptide 1 using CRISPR/Cas9. Biology. 13(6), 367.

Li, Z., Lan, J., Shi, X., Lu, T., Hu, X., Liu, X., Chen, Y., He, Z., 2024b. Whole-genome sequencing reveals rare off-target mutations in MC1R-Edited pigs generated by using CRISPR-Cas9 and somatic cell nuclear transfer. CRISPR J. 7(1), 29–40.

Liu, Y., Liu, S., Sheng, H., Feng, X., Wang, S., Hu, Y., Zhang, L., Cai, B., Ma, Y., 2024a. Revolutionizing cattle breeding: Gene editing advancements for enhancing economic traits. Gene. 927, 148595.

Liu, Z., Dai, L., Sun, T., Liu, Y., Bao, Y., Gu, M., Fu, S., He, X., Shi, C., Wang, Y., Guo, L., Zhou, L., Ma, F., Na, R., Zhang, W., 2024. Massively parallel CRISPR-Cas9 knockout screening in sheep granulosa cells for FSH response genes. Animals. 14(6), 898.

Mahdi, A.K., Fitzpatrick, D.S., Hagen, D.E., McNabb, B.R., Urbano Beach, T., Muir, W.M., Werry, N., Van Eenennaam, A.L., Medrano, J.F., Ross, P.J., 2025. Efficient generation of SOCS2 knock-out sheep by electroporation of crispr-cas9 ribonucleoprotein complex with Dual-sgRNAs. CRISPR J. 8(1), 13–25.

Mars, T., Strazisar, M., Mis, K., Kotnik, N., Pegan, K., Lojk, J., Grubic, Z., Pavlin, M., 2014. Electrotransfection and lipofection show comparable efficiency for in vitro gene delivery of primary human myoblasts. J. Membr. Biol. 248(2), 273–283.

Minkenberg, B., Wheatley, M., Yang, Y., 2017. CRISPR/Cas9-enabled multiplex genome editing and its application. In: Weeks, D.P., Yang, B. (Eds.), Progress in molecular biology and translational science. Academic Press, Cambridge, pp. 111–132.

Mueller, M.L., McNabb, B.R., Owen, J.R., Hennig, S.L., Ledesma, A.V., Angove, M.L., Conley, A.J., Ross, P.J., Van Eenennaam, A.L., 2023. Germline ablation achieved via CRISPR/Cas9 targeting of NANOS3 in bovine zygotes. Front. Genome. Ed. 5, 132124.

Navarro-Serna, S., Hachem, A., Canha-Gouveia, A., Hanbashi, A., Garrappa, G., Lopes, J.S., París-Oller, E., Sarrías-Gil, L., Flores-Flores, C., Bassett, A., Sánchez, R., Bermejo-Álvarez, P., Matás, C., Romar, R., Parrington, J., Gadea, J., 2021. Generation of Nonmosaic, two-pore channel 2 biallelic knockout pigs in one generation by CRISPR-Cas9 microinjection before oocyte insemination. CRISPR J. 4(1), 132–146.

Navarro-Serna, S., Piñeiro-Silva, C., Fernández-Martín, I., Dehesa-Etxebeste, M., López de Munain, A., Gadea, J., 2024. Oocyte electroporation prior to in vitro fertilization is an efficient method to generate single, double, and multiple knockout porcine embryos of interest in biomedicine and animal production. Theriogenology. 218, 111–118.

Nguyen, T.-V., Do, L.T.K., Lin, Q., Nagahara, M., Namula, Z., Wittayarat, M., Hirata, M., Otoi, T., Tanihara, F., 2024. Programmed cell death-1-modified pig developed using electroporation-mediated gene editing for in vitro fertilized zygotes. In Vitro Cell Dev. Biol. Anim. 60(7), 716–724.

Oh, M.-J., Batmunkh, B., Mo, J.-Y., Kim, S.-H., 2024. Effects of co-culture system and apple seed extract supplementation on apoptosis and microtubule formation in pig IVF embryos with cell cycle arrested. J. Anim. Reprod. Biotechnol. 39(3), 169–178.

Owen, J.R., Hennig, S.L., McNabb, B.R., Mansour, T.A., Smith, J.M., Lin, J.C., Young, A.E., Trott, J.F., Murray, J.D., Delany, M.E., Ross, P.J., Van Eenennaam, A.L., 2021. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. BMC Genomics. 22, 118.

Park, I., Navarro-Serna, S., Pinho, R.M., Berger, T., Maga, E.A., Gadea, J., Kim, S.K., Ross, P.J., 2024. Electroporation of CRISPR/Cas9 targeting neurogenin 3 (NGN3) in porcine embryos and its effects on mosaicism and off-target effects by next generation sequencing (NGS). ReGEN Open. 4(1), 9–20.

Pi, W., Feng, G., Liu, M., Nie, C., Chen, C., Wang, J., Wang, L., Wan, P., Liu, C., Liu, Y., Zhou, P., 2024. Electroporation delivery of Cas9 sgRNA ribonucleoprotein-mediated genome editing in sheep IVF zygotes. Int. J. Mol. Sci. 25(17), 9145.

Piñeiro-Silva, C., Gadea, J., 2024. Optimization of lipofection protocols for CRISPR/Cas9 delivery in porcine zona pellucida intact oocytes: A study of coincubation duration and reagent efficacy. Theriogenology. 230, 121–129.

Punetha, M., Saini, S., Choudhary, S., Sharma, S., Bala, R., Kumar, P., Sharma, R.K., Yadav, P.S., Datta, T.K., Kumar, D., 2024. Establishment of CRISPR-Cas9 ribonucleoprotein mediated MSTN gene edited pregnancy in buffalo: Compare cells transfection and zygotes electroporation. Theriogenology. 229, 158–168.

Punetha, M., Saini, S., Sharma, S., Thakur, S., Dahiya, P., Mangal, M., Kumar, R., Kumar, D., Yadav, P.S., 2024. CRISPR‐Mediated SRY gene mutation increases the expression of female lineage‐specific gene in pre‐implantation buffalo embryo. Reprod. Domest. Anim. 59(11), e14739.

Ren, J., Hai, T., Chen, Y., Sun, K., Han, Z., Wang, J., Li, C., Wang, Q., Wang, L., Zhu, H., Yu, D., Li, W., Zhao, S., 2023. Improve meat production and virus resistance by simultaneously editing multiple genes in livestock using cas12imax. Sci. China. Life. Sci. 67(3), 555–564.

Saber Sichani, A., Ranjbar, M., Baneshi, M., Torabi Zadeh, F., Fallahi, J., 2023. A review on advanced CRISPR-based genome-editing tools: Base editing and prime editing. Mol. Biotechnol. 65(6), 849–860.

Salvesen, H.A., Grupen, C.G., McFarlane, G.R., 2024. Tackling mosaicism in gene edited livestock. Front. Anim. Sci. 5, 1-12.

Sardar, D., Hossain, M.T., 2024. Influence of electroporation timing on CRISPR/Cas-mediated multiple gene editing in buffalo embryos. Available online: http://dx.doi.org/10.2139/ssrn.4821613.

Seijas, A., Cora, D., Novo, M., Al-Soufi, W., Sánchez, L., Arana, Á.J., 2025. Crispr/Cas9 delivery systems to enhance gene editing efficiency. Int. J. Mol. Sci. 26(9), 4420.

Singh, P., Ali, S.A., 2021. Impact of CRISPR-Cas9-based genome engineering in farm animals. Vet. Sci. 8(7), 122.

Sunwasiya, D.K., Mondal, S., 2024. Applications of CRISPR/Cas9 guided genome editing in livestock: an update. ECCMC. 7(12), 1-10.

Tara, A., Singh, P., Gautam, D., Tripathi, G., Uppal, C., Malhotra, S., De, S., Singh, M.K., Telugu, B.P., Selokar, N.L., 2024. CRISPR-mediated editing of β-lactoglobulin (BLG) gene in buffalo. Sci. Rep. 14(1), 14822.

Tei, C., Hata, S., Mabuchi, A., Okuda, S., Ito, K.K., Genova, M., Fukuyama, M., Yamamoto, S., Chinen, T., Toyoda, A., Kitagawa, D., 2025. Comparative analysis of multiple DNA double-strand break repair pathways in CRISPR-mediated endogenous tagging. Commun. Biol. 8(1), 749.

Torigoe, N., Lin, Q., Liu, B., Nakayama, Y., Nakai, A., Nagahara, M., Tanihara, F., Hirata, M., Otoi, T., 2025. Effects of electroporation timing and cumulus cell attachment on in vitro development and genome editing of porcine embryos. Reprod. Domest. Anim. 60(2), e70011.

Wang, H., Yang, H., Li, T., Chen, Y., Chen, J., Zhang, X., Zhang, J., Zhang, Y., Zhang, N., Ma, R., Huang, X., Liu, Q., 2025.

Optimization of crispr/cas9 gene editing system in sheep (ovis aries) oocytes via microinjection. Int J Mol Sci. 26(3), 1065.

Wadood, A.A., Bordbar, F., Zhang, X., 2025. Integrating omics approaches in livestock biotechnology: Innovations in production and reproductive efficiency. Front. Anim. Sci. 6, 1-22.

Wang, J.Y., Doudna, J.A., 2023. CRISPR technology: a decade of genome editing is only the beginning. Sci. 379(6629), eadd8643.

Wang, H., Yang, H., Li, T., Chen, Y., Chen, J., Zhang, X., Zhang, J., Zhang, Y., Zhang, N., Ma, R., Huang, X., Liu, Q., 2025. Optimization of CRISPR/Cas9 gene editing system in sheep (ovis aries) oocytes via microinjection. Int. J. Mol. Sci. 26(3), 1065.

Wang, X., Niu, Y., Zhou, J., Yu, H., Kou, Q., Lei, A., Zhao, X., Yan, H., Cai, B., Shen, Q., Zhou, S., Zhu, H., Zhou, G., Niu, W., Hua, J., Jiang, Y., Huang, X., Ma, B., Chen, Y., 2016. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci. Rep. 6(1), 32271.

Watanabe, S., Takabayashi, S., Morohoshi, K., Nakamura, S., Sato, M., 2024. Possible application of GONAD/-GONAD, a novel In Vivo genome editing technology, to generate genome-edited large experimental animals. Nat. Cell. Sci. 2(4),278-288.

Wiley, L., Cheek, M., LaFar, E., Ma, X., Sekowski, J., Tanguturi, N., Iltis, A., 2024. The ethics of human embryo editing via CRISPR-Cas9 technology: a systematic review of ethical arguments, reasons, and concerns. HEC Forum. 37(2), 267–303.

Wu, H., Wang, Y., Zhang, Y., Yang, M., Lv, J., Liu, J., Zhang, Y., 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc. Natl. Acad. Sci. 112(13), E1530–E1539.

Xie, Y., Wang, M., Gu, L., Wang, Y., 2022. CRISPR/Cas9-mediated knock-in strategy at the Rosa26 locus in cattle fetal fibroblasts. PLoS One. 17(11), e0276811.

Xiong, X., Wang, L., Wang, Y., Hua, S., Zi, X., Zhang, Y., 2012. Different preferences of ivf and scnt bovine embryos for culture media. Zygote. 22(1), 1–9.

Xue, Z., Ren, M., Wu, M., Dai, J., Rong, Y.S., Gao, G., 2014. Efficient gene knock-out and knock-in with transgenic Cas9 in drosophila. G3 (Bethesda). 4(5), 925–929.

Yang, N., Liu, Y., Zhang, J., Sun, S., Wu, X., Li, X., 2025. Asynchronous embryo transfer in ewes. Reproduction in Domestic Animals. 60(1), e70004.

Yoshimi, K., Oka, Y., Miyasaka, Y., Kotani, Y., Yasumura, M., Uno, Y., Hattori, K., Tanigawa, A., Sato, M., Oya, M., Nakamura, K., Matsushita, N., Kobayashi, K., Mashimo, T., 2020. Combi-crispr: Combination of nhej and hdr provides efficient and precise plasmid-based knock-ins in mice and rats. Hum. Genet. 140(2), 277–287.

Yuan, H., Yang, L., Zhang, Y., Xiao, W., Wang, Z., Tang, X., Ouyang, H., Pang, D., 2022. Current status of genetically modified pigs that are resistant to virus infection. Viruses. 14(2), 417.

Yuan, H., Song, C., Xu, H., Sun, Y., Anthon, C., Bolund, L., Lin, L., Benabdellah, K., Lee, C., Hou, Y., Gorodkin, J., Luo, Y., 2025. An overview and comparative analysis of CRISPR-spcas9 grna activity prediction tools. CRISPR J. 8(2), 89–104.

Yuan, Y.-G., Liu, S.-Z., Farhab, M., Lv, M.-Y., Zhang, T., Cao, S.-X., 2024. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock. Functional & Integrative Genomics. 24(3), 81.

Yunes, M.C., Osório-Santos, Z., von Keyserlingk, M.A.G., Hötzel, M.J., 2021. Gene editing for improved animal welfare and production traits in cattle: Will this technology be embraced or rejected by the public?. Sustainability. 13(9), 4966.

Zafar, H., Faheem, M., Niamat, A., Ahmad, A., Munir, A., Khan, M.N., Naeem, M., 2025. Available cargoes and their delivery tools in genome editing. In: Ahmad, A., Munawar, N., Zhang, B. (Eds.), Gene-Edited Crops. CRC Press, Boca Raton, pp. 49–58.

Zhang, R.H., 2025. CRISPR: Challenges and quantum perspectives. Available online: https://www.preprints.org/manuscript/202503.1169/v1.

Zhang, X., Qiu, M., Han, B., Liao, L., Peng, X., Lin, J., Zhang, N., Hai, L., Liang, L., Ma, Y., Li, W., Liu, M., 2025. Generation and propagation of high fecundity gene edited fine wool sheep by CRISPR/Cas9. Sci. Rep. 15(1), 2557.

Zheng, X., Huang, C.-H., Yan, S., Rong, M.-D., 2025. Advances and applications of genome-edited animal models for severe combined immunodeficiency. Zoological Research. 46(1), 249–260.

Zhang, Y., Yu, L.-C., 2008. Microinjection as a tool of mechanical delivery. Curr. Opin. Biotechnol. 19(5), 506–510.

Zhou, W., Wan, Y., Guo, R., Deng, M., Deng, K., Wang, Z., Zhang, Y., Wang, F., 2017. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One. 12(10), e0186056.