Lytic activity of novel bacteriophages recovered from pig farm sewage against multidrug-resistant Escherichia coli https://doi.org/10.12982/VIS.2026.037

Main Article Content

Vilakone Luangmanyvongkhao
Nattha Vigad
Wattana Pelyuntha
Kitiya Vongkamjan
Kridda Chukiatsiri

Abstract

Antimicrobial resistance (AMR) presents a critical challenge to both human and animal health, with multidrug-resistant (MDR) Escherichia coli (E. coli) posing serious risks in livestock systems, particularly in pig farming. This study aimed to isolate and characterize bacteriophages (phages) from pig farm sewage and evaluate their lytic efficacy against MDR E. coli recovered from diarrheal pig feces. Forty E. coli isolates (n = 40) from pigs at different production stages exhibited high resistance to amoxicillin (100%) and oxytetracycline (95%), while maintaining susceptibility to enrofloxacin (98%) and gentamicin (85%). Thirteen phages (ECVL1–ECVL13) were isolated from pig farm sewage samples, among which ECVL1, ECVL2, and ECVL6 showed strong lytic activity, lysing over 90% of the tested isolates. A phage cocktail composed of these three phages was tested against representative E. coli isolates at various multiplicity of infections (MOIs). At MOI 105, bacterial reductions of up to 71% were observed within 6 h, particularly for isolate VL19, indicating a dose-dependent and time-sensitive response. The findings support the feasibility of using highly lytic phage cocktails to reduce MDR E. coli in pig production environments. These results highlight phage therapy as a viable biocontrol strategy for AMR mitigation, especially in agricultural systems burdened by high antibiotic use.

Article Details

How to Cite
Vilakone Luangmanyvongkhao, Nattha Vigad, Wattana Pelyuntha, Kitiya Vongkamjan, & Chukiatsiri, K. . (2025). Lytic activity of novel bacteriophages recovered from pig farm sewage against multidrug-resistant Escherichia coli : https://doi.org/10.12982/VIS.2026.037. Veterinary Integrative Sciences, 24(2), 1–14. retrieved from https://he02.tci-thaijo.org/index.php/vis/article/view/275169
Section
Research Articles

References

Abedon, S.T., 2011. Lysis from without. Bacteriophage. 1(1), 46-49.

Abedon, S.T., 2018. Phage therapy: various perspectives on how to improve the art. In: Medina, C., López-Baena, F. (Eds.), Host-pathogen interactions. Methods in molecular biology. Humana, New York, pp. 113-127.

Altamirano, F.L.G., Barr, J.J., 2019. Phage therapy in the post antibiotic era. Clin. Microbiol. Rev. 32(2), e00066-18.

Boonkerd, N., Chaikhiandee, S., 2022. Antibiotic resistance of Escherichia coli isolated from swine feces in Phayao Province. Burapha Sci. J. 1530-1543.

Buttimer, C., Sutton, T., Colom, J., Murray, E., Bettio, P.H., Smith, L., Bolocan, A.S., Shkoporov, A., Oka, A., Liu, B., Herzog, J.W., Sartor, R.B., Draper, L.A., Ross, R.P., Hill, C., 2022. Impact of a phage cocktail targeting Escherichia coli and Enterococcus faecalis as members of a gut bacterial consortium in vitro and in vivo. Front. Microbiol. 13, 936083.

Chanthavong, V., Vigad, N., Pelyuntha, W., Yamik, D.Y., Vongkamjan, K., Yingkajorn, M., Chaisowwong, W., Tippaya, K., Tadee, P., Chukiatsiri, K., 2025. Effectiveness of a single-dose phage cocktail on the reduction of multidrug-resistant Escherichia coli in suckling piglets. Vet. Microbiol. 302, 110395.

Clinical and Laboratory Standards Institute, 2024. Performance standards for antimicrobial susceptibility testing, 34th edition. Wayne, PA, USA, CLSI.

Cornelissen, A., Ceyssens, P.J., T'Syen, J., Van Praet, H., Noben, J.P., Shaburova, O.V., Krylov, V.N., Volckaert, G., Lavigne, R., 2011. The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties. PLoS ONE, 6(4), e18597.

de Souza, A.L.F., Stefani, L.D.C.M., 2024. Isolation of lytic bacteriophages of Escherichia coli from swine. Braz. J. Vet. Res. Anim. Sci. 61, e222458.

Dąbrowska, K., 2019. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 39(5), 2000-2025.

Dissanayake, U., Ukhanova, M., Moye, Z.D., Sulakvelidze, A., Mai, V., 2019. Bacteriophages reduce pathogenic Escherichia coli counts in mice without distorting gut microbiota. Front. Microbiol. 10, 1984.

Gencay, Y.E., Jasinskytė, D., Robert, C., Semsey, S., Martínez, V., Petersen, A., Brunner, K., de Santiago Torio, A., Salazar, A., Turcu, I.C., Eriksen, M.K., Koval, L., Takos, A., Pascal, R., Schou, T.S., Bayer, L., Bryde, T., Johansen, K.C., Bak, E.G., Smrekar, F., Doyle, T.B., Satlin, M.J., Gram, A., Carvalho, J., Jessen, L., Hallström, B., Hink, J., Damholt, B., Troy, A., Grove, M., Clube, J., Grøndahl, C., Haaber, J.K., van der Helm, E., Zdravkovic, M., Sommer, M.O.A., 2024. Engineered phage with antibacterial CRISPR-Cas selectively reduce E. coli burden in mice. Nat. Biotechnol. 42(2), 265-274.

Huber, L., Hallenberg, G.S., Lunha, K., Leangapichart, T., Jiwakanon, J., Hickman, R.A., Magnusson, U., Sunde, M., Järhult, J.D., Van Boeckel, T.P., 2021. Geographic drivers of antimicrobial use and resistance in pigs in Khon Kaen Province, Thailand. Front. Vet. Sci. 8, 659051.

Jończyk, E., Kłak, M., Międzybrodzki, R., Górski, A., 2011. The influence of external factors on bacteriophages. Folia Microbiol. 56, 191-200.

Kudva, I.T., Jelacic, S., Tarr, P.I., Youderian, P., Hovde, C.J., 1999. Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl. Environ. Microbiol. 65(9), 3767–3773.

McEwen, S.A., Collignon, P.J., 2018. Antimicrobial resistance: a one health perspective. Microbiol. Spectr. 6(2), 1-26.

Mitchaothai, J., Srikijkasemwat, K., 2021. Antimicrobial resistance in fecal Escherichia coli from different pig production systems. Anim. Biosci. 35(1), 138.

Niu, Y.D., Liu, H., Du, H., Meng, R., Sayed Mahmoud, E., Wang, G., McAllister, T.A., Stanford, K., 2021. Efficacy of individual bacteriophages does not predict efficacy of bacteriophage cocktails for control of Escherichia coli O157. Front. Microbiol. 12, 616712.

O'Flynn, G., Ross, R.P., Fitzgerald, G.F., Coffey, A., 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol. 70(6), 3417–3424.

O'Neill, J., 2016. Tackling drug-resistant infections globally: final report and recommendations. The Review on Antimicrobial Resistance. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover. pdf

Pelyuntha, W., Ngasaman, R., Yingkajorn, M., Chukiatsiri, K., Benjakul, S., Vongkamjan, K., 2021. Isolation and characterization of potential Salmonella phages targeting multidrug-resistant and major serovars of Salmonella derived from broiler production chain in Thailand. Front. Microbiol. 12, 662461.

Pelyuntha, W., Vongkamjan, K., 2023. Control of Salmonella in chicken meat by a phage cocktail in combination with propionic acid and modified atmosphere packaging. Foods. 12(22), 4181.

Pelyuntha, W., Ngasaman, R., Yingkajorn, M., Chukiatsiri, K., Guyonnet, V., Vongkamjan, K., 2024. Phage cocktail administration to reduce Salmonella load in broilers. Res. Vet. Sci. 169, 105163.

Pelyuntha, W., Narkpao, T., Yamik, D.Y., Kiatwuthinon, P., Sanguankiat, A., Kovitvadhi, A., Vongkamjan, K., 2025a. Efficiency, cytotoxicity, and survivability evaluation of Salmonella phage cocktail against Salmonella derived from broiler sources. Vet. World. 18(2), 475.

Pelyuntha, W., Yamik, D.Y., Vetboocha, N., Vongkamjan, K., 2025b. Effect of novel phage cocktail on Salmonella recovered from broiler sources and its anti-biofilm effect on food contact surface model. Food Control. 169, 111000.

Peng, Z., Hu, Z., Li, Z., Zhang, X., Jia, C., Li, T., Dai, M., Tan, C., Xu, Z., Wu, B., Chen, H., Wang, X., 2022. Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nat. Commun. 13(1), 1116.

Pires, D.P., Oliveira, H., Melo, L.D., Sillankorva, S., Azeredo, J., 2016. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl. Microbiol. Biotechnol. 100(5), 2141-2151.

Principi, N., Silvestri, E., Esposito, S., 2019. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. 10, 513.

Pungpian, C., 2020. Genetic characteristics of antimicrobial resistance in Escherichia coli isolated from pigs, pork and humans in Thailand and Lao PDR border provinces (Theses and Dissertations). Chulalongkorn University, p. 403.

Rasheed, M.U., Thajuddin, N., Ahamed, P., Teklemariam, Z., Jamil, K., 2014. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev. Inst. Med. Trop. Sao. Paulo. 56, 341-346.

Salmond, G.P., Fineran, P.C., 2015. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13(12), 777-786.

Sanchez, B.C., Heckmann, E.R., Green, S.I., Clark, J.R., Kaplan, H.B., Ramig, R.F., Muldrew, K.L., Hines-Munson, C., Skelton, F., Trautner, B.W., Maresso, A.W., 2022. Development of phage cocktails to treat E. coli catheter-associated urinary tract infection and associated biofilms. Front. Microbiol. 13, 796132.

Skaradzińska, A., Śliwka, P., Kuźmińska-Bajor, M., Skaradziński, G., Rząsa, A., Friese, A., Roschanski, N., Murugaiyan, J., Roesler, U.H., 2017. The efficacy of isolated bacteriophages from pig farms against ESBL/AmpC-producing Escherichia coli from pig and turkey farms. Front. Microbiol. 8, 530.

Songphasuk, T., Imklin, N., Sriprasong, P., Woonwong, Y., Nasanit, R., Sajapitak, S., 2022. Bacteriophage efficacy in controlling swine enteric colibacillosis pathogens: An in vitro study. Vet. World. 15(12), 2822.

Tang, Z., Tang, N., Wang, X., Ren, H., Zhang, C., Zou, L., Han, L., Guo, L., Liu, W., 2023. Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Front. Microbiol. 14, 1091442.

Van Boeckel, T.P., Glennon, E.E., Chen, D., Gilbert, M., Robinson, T.P., Grenfell, B.T., Levin, S.A., Bonhoeffer, S., Laxminarayan, R., 2017. Reducing antimicrobial use in food animals. Sci. 357(6358), 1350-1352.

World Health Organization, 2020‎. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. World Health Organization. Available online: https://iris.who.int/handle/10665/332081.

Yan, L., Hong, S.M., Kim, I.H., 2012. Effect of bacteriophage supplementation on the growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in growing pigs. Asian-Australas J. Anim. Sci. 25(10), 1451.