Preventing ruminal acidosis and optimizing ruminant performance by carbonate buffer supplementation: A review https://doi.org/10.12982/VIS.2026.040
Main Article Content
Abstract
Feeding high-concentrate diet is an effective way of improving the performance and feed efficiency of ruminants. However, feeding high-concentrate diet to ruminants may lead to subacute ruminal acidosis (SARA) incidence. This study aims to determine the effect of giving carbonate compounds to ruminants on high-concentrate feed. Carbonate compounds often function as a buffer to maintain rumen pH and prevent the occurrence of SARA. Several studies have shown that SARA can cause rumenitis, milk fat depression, laminitis, liver abscess, and death. Carbonate compounds can be given in single form or in combination with other compounds such as sodium (Na+), calcium (Ca2+), potassium (K+), and magnesium (Mg2+). This combination often leads to the formation of complex compounds, such as sodium bicarbonate (NaHCO3), calcium carbonate (CaCO3), sodium carbonate (Na2CO3), and potassium carbonate (K2CO3). NaHCO3 has been reported to be one of the most popular carbonate compounds to prevent and reduce SARA. Consistent findings across several investigations indicate that supplementation of carbonate buffer at a level of 0.7%–1.5% plays a role in stabilizing ruminal pH, reducing the risk of SARA, and supporting efficient fermentation.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publishing an article with open access in Veterinary Integrative Sciences leaves the copyright with the author. The article is published under the Creative Commons Attribution License 4.0 (CC-BY 4.0), which allows users to read, copy, distribute and make derivative works from the material, as long as the author of the original work is cited.
References
Agustinho, B.C., Ravelo, A., Vinyard, J.R., Lobo, R.R., Arce-Cordero, J.A., Monteiro, H.F., Sarmikasoglou, E., Bennett, S., Johnson, M.L., Vieira, E.R.Q., Stoffel, C., Stocks, S.E., Faciola, A.P., 2022. Effects of replacing magnesium oxide with calcium-magnesium carbonate with or without sodium bicarbonate on ruminal fermentation and nutrient flow in vitro. J. Dairy Sci. 105, 3090–3101.
Alfonso-Avila, A.R., Charbonneau, Chouinard, P.Y., Tremblay, G.F., Gervais, R., 2017. Potassium carbonate as a cation source for early-lactation dairy cows fed high-concentrate diets. J. Dairy Sci. 100, 1751–1765.
Alhidary, I.A., Abdelrahman, M.M., Elsabagh, M., 2019. A comparative study of four rumen buffering agents on productive performance, rumen fermentation and meat quality in growing lambs fed a total mixed ration. Animal. 13, 2252–2259.
Alves, G.M.C., 2024. Strategic nutritional interventions with ntics and their relationship to performance, feeding behavior, and reticulorumen environment in cows and calves under subacute ruminal acidosis risk. University of Kentucky.
Aschenbach, J.R., Penner, G.B., Stumpff, F., Gäbel, G., 2011. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci. 89, 1092–1107.
Askar, A.R., Guada, J.A., Gonzalez, J.M., de Vega, A., Castrillo, C., 2011. Effects of sodium bicarbonate on diet selection and rumen digestion by growing lambs individually fed whole barley grain and a protein supplement at their choice. Anim. Feed Sci. Technol. 164, 45-52.
Aslam, M., 1991. Controlled ruminal infusion of sodium (Thesis). University of Agriculture Faisalabad, Pakistan.
Atkinson, O., 2014 Prevalence of subacute ruminal acidosis (SARA) on UK dairy farms. Cattle Pract. 22(1), 1-9.
Bach, A., Guasch, I., Elcoso, G., Duclos, J., Khelil-Arfa, H., 2018. Modulation of rumen pH by sodium bicarbonate and a blend of different sources of magnesium oxide in lactating dairy cows submitted to a concentrate challenge. J. Dairy Sci. 101, 9777–9788.
Baffa, D.F., Tadeu, S.O., Alberto, M.F., Michele, G.C., Ismael, N.S., Elon, S.A., José, R.M.Jr., Elvanio, J.L.M.F., 2024. Evaluation of associative effects on degradability, fermentation parameters, and in vitro methane production as a result of variation in the ruminant’s diets constituents. Grasses. 3, 274-286.
Boerner, B.J., Byers F.M., Schelling, G.T., 1987. Trona and sodium bicarbonate in beef cattle diets effects on site and extent of digestion. J. Anim. Sci. 65, 303-308.
Calsamiglia, S., Blanch, M., Ferret, A., Moya, D., 2012. Is subacute ruminal acidosis a pH related problem? causes and tools for its control. Anim. Feed Sci. Technol. 172, 42–50.
Calsamiglia, S., Cardozo, P.W., Ferret, A., Bach, A., 2008. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J. Anim. Sci. 86, 702–711.
Carter, R.R., Grovum, W.L., 1990. A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. J. Anim. Sci. 68, 2811-2832.
Chen, Y., Oba, M., Guan, L.L., 2012. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet. Microbiol. 159(3–4), 451–459.
Clark, J.H., Plegge, A.W., Davis, C.L., McCoy, G.C., 1989. Effects of calcium carbonate on ruminal fermentation, nutrient digestibility, and cow performance. J. Dairy Sci. 72, 493–500.
Correa, L.B., Zanetti, M.A., Saran Netto, A., Del Claro, G.R., Paiva, F.A., Martins, P.G.M.A., 2014. Effects of supplemental dietary sodium bicarbonate on performance of lactating Holstein cows during the summer season in Brazil. Livest. Sci. 169, 78–82.
Cruywagen, C.W., Taylor, S., Beya, M.M., Calitz, T., 2015. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. J. Dairy Sci. 98, 5506–5514.
Deswysen, A.G., Ellis, W.C., Pond, K.R., 1987. Interrelationships among Voluntary Intake, Eating and Ruminating behavior and ruminal motility of heifers fed corn silage. J. Anim. Sci. 64, 835–841.
Dijkstra, J., Ellis, J.L., Kebreab, E., Strathe, A.B. López, S.,France, J., Bannink, A., 2012. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 172, 22–33.
Dion, S., Brassard, M.E., Lévesque, J., Rico, D.E., Tremblay, G.F., Gervais, R., Chouinard, P.Y., 2021. Potassium carbonate as a supplement to improve milk fat concentration and yield in early-lactating dairy goats fed a high-starch, low-fiber diet. J. Dairy Sci. 104, 7794–7807.
Doepel, L., Hayirli, A., 2011. Exclusion of dietary sodium bicarbonate from a wheat-based diet: Effects on milk production and ruminal fermentation. J. Dairy Sci. 94, 370–375.
Dschaak, C.M., Eun, J.S., Young, A.J., Stott, R.D., Peterson, S., 2010 Effects of supplementation of natural zeolite on intake, digestion, ruminal fermentation, and lactational performance of dairy cows. Prof. Anim. Sci. 26, 647–654.
Elmhadi, M.E., Ali, D.K., Khogali, M.K., Wang, H., 2022. Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies. Anim. Nutr. 10, 148–155.
Enemark, J.M., 2008. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): a review. Vet. J. 176, 32-43.
Erasmus, L.J., Prinsloo, J., 1989. The potential of a phyllosilicate (Palabora vermiculite) as buffer in dairy cattle diets. J. Dairy Sci. 72, 964–971.
Erdman, R.A., 1988. Dietary buffering requirements of the lactating dairy cow: A review. J. Dairy Sci. 71, 3246–3266.
Erdman, R.A., Hemken, R.W., Bull, L.S., 1982. Dietary sodium bicarbonate and magnesium oxide for early postpartum lactating dairy cows: effects of production, acid-based metabolism, and digestion. J. Dairy Sci. 65, 712-731.
Esdale, W.J., Satter, L.D., 1972. Manipulation of ruminal fermentation, IV. effect of altering ruminal pH on volatile fatty acid production. J. Dairy Sci. 55, 964–970.
Fairfield, A.M., Plaizier, J.C., Duffield, T.F., Lindinger, M.I., Bagg, R., Dick, P., McBride, B.W., 2007. Effects of prepartum administration of a monensin controlled release capsule on rumen pH, feed intake, and milk production of transition dairy cows. J. Dairy Sci. 90, 937-945.
Firkins, J.L., Yu, Z., 2015. Ruminant nutrition symposium: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition. J. Anim. Sci. 93(4), 1450–1470.
Fraley, S.E., Hall, M.B., and Nennich, T.D., 2015. Effect of variable water intake as mediated by dietary potassium carbonate supplementation on rumen dynamics in lactating dairy cows. J. Dairy Sci. 98, 3247–3256.
Gastaldello Jr., A.L., Pires, A.V., Susin, I., Mendes, C.Q., Queiroz, M.A.A., Amaral, R.C., Gentil, R.S., Ferreira, E.M., Mourão, G.B., Eastridge, M.L., 2013. Limestone with different particle size and sodium bicarbonate to feedlot lambs fed high grain diets with or without monensin. Small Rumin. Res. 114, 80–85.
Giger-Reverdin, S. Rigalma, K., Desnoyers, M., Sauvant, D., Duvaux-Ponter, C., 2014. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: Relationships between behavioral and physiological parameters and effect of between-animal variability. J. Dairy Sci. 97, 4367–4378.
Golder, H.M., Lean, I.J., 2024. Ruminal acidosis and its definition: a critical review. J. Dairy Sci. 107(12), 100066-10098.
González, L.A., Manteca, X., Calsamiglia, S., Schwartzkopf-Genswein, K.S., Ferret, A., 2012. Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function, and feeding behavior (a review). Anim. Feed Sci. Technol. 172, 66–79.
Gozho, G.N., Plaizier, J.C., Krause, D.O., Kennedy, A.D., Wittenberg, K.M., 2005. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J. Dairy Sci. 88, 1399–1403.
Hall, M.W., Thomas, E.E., 1984. Effect of selected dietary buffers upon utilization of concentrate- or roughage-based cattle diets: laboratory studies. J. Anim. Sci. 59, 227–236.
Harrison, J.H., Riley, R.E., Loney, K.A., 1989. Effect of type and amount of buffer addition to grass silage-based total mixed rations on milk production and composition. J. Dairy Sci. 72, 1824–1830.
Hernández, J., Benedito, J.L., Abuelo, A., Castillo, C., 2014. Ruminal acidosis in feedlot: from Aetiology to Prevention. Sci. World J. 2014, 702572
Hu, W., Kung, L., Michael, R. Murphy., 2007. Relationships between dry matter intake and acid-base status of lactating dairy cows as manipulated by dietary cation-anion difference. Anim. Feed Sci. Technol. 136, 216–225.
Hu, W., Murphy, M.R., 2004. Dietary cation-anion difference effects on performance and acid-base status of lactating dairy cows: A meta-analysis. J. Dairy Sci. 87, 2222–2229.
Huo, W., Zhu, W., Mao, S., 2014. Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. World J. Microbiol. Biotechnol. 30, 669–680.
Ishler, V., Heinrichs, A.J., Varga, G., 1996. From feed to milk: understanding rumen function. Pennsylvania State University.
Jacques, K.A., Axe, D.E., Harris, T.R., Harmon, D.L., Bolsen, K.K., Johnson, D.E., 1986. Effect of sodium bicarbonate and sodium bentonite on digestion, solid and liquid flow, and ruminal fermentation characteristics of forage sorghum silage-based diets fed to steers. J. Anim. Sci. 63, 923–932.
Jaramillo-López, E., Itza-Ortiz, M.F., Peraza-Mercado, G., Carrera-Chávez, J.M., 2017. Ruminal acidosis: Strategies for its control. Austral. J. Vet. Sci. 49, 139–148.
Johnson, M.A., Sweeney, T.F., Muller, L.D., 1988. Effects of feeding synthetic zeolite a and sodium bicarbonate on milk production nutrient digestion, and rate of digesta passage in dairy cows. J. Dairy Sci. 71, 946–953.
Jones, M.L., Clark, J.D., Michael, N.A., Bewley, J.M., 2016. Effect of supplementing Lactating dairy cow ration with sodium sesquicarbonate on reticulorumen pH, rumination, and dry matter intake. J. Anim. Sci. 94, 667-667.
Kennelly, J.J., Robinson, B., Khorasani, G.R., 1999. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in early-lactation Holstein cows. J. Dairy Sci. 82, 2486-2496.
Khafipour, E., Li, S., Plaizier, J.C., Krause, D.O., 2009. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl. Environ. Microbiol. 75(22), 7115e24.
Khafipour, E., Li, S., Tun, H.M., Derakhshani, H., Moossavi, S., Plaizier, J.C., 2016. Effects of grain feeding on microbiota in the digestive tract of cattle. Anim. Front. 6(2), 13-19.
Khorasani, G.R., Kennelly, J.J., 2001. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in late-lactation Holstein cows. J. Dairy Sci. 84, 1707–1716.
Kilmer, L.H., Muller, L.D., Snyder, T.J., 1981. Addition of sodium bicarbonate to rations of postpartum dairy cows: physiological and metabolic effects. J. Dairy Sci. 64, 2357–2369.
Kitkas, G.C., Valergakis, G.E., Kritsepi-Konstantinou, M., Gelasakis, A., Ar-senos, G., Kalaitzakis, E., Panousis., 2019. Effects of ruminal pH and subacute ruminal acidosis on milk yield and composition of Holstein cows in different stages of lactation. J. Hell. Vet. Med. 70, 1551-1560.
Kitkas, G.C., Valergakis, G.E., Karatzias, H., Panousis, N., 2013. Subacute ruminal acidosis: prevalence and risk factors in Greek dairy herds. Iran J. Vet. Res. 14, 183-189.
Mahdavirad, N., Chaji, M., Bojarpour, M., Dehghanbanadaky, M., 2021. Comparison of the effect of sodium bicarbonate, sodium sesquicarbonate, and zeolite as rumen buffers on apparent digestibility, growth performance, and rumen fermentation parameters of Arabi lambs. Trop. Anim. Health Prod. 53, 465.
Malafaia, P., Souza, V.C.D., Costa, D.F.A., 2022. Physicochemical evaluations of diets, rumen fluid, blood and faeces of beef cattle under two different feedlot systems. Animals. 12(22), 3114.
Mao, S., Huo, W., Liu, J., Zhang, R., Zhu, W., 2017. In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota. J. Sci. Food Agric. 97, 1276-1285.
Mao, S., Zhang, R., Wang, D., Zhu, W., 2013. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe. 24, 12-19.
Maulfair, D.D., McIntyre, K.K., Heinrichs, A.J., 2013. Subacute ruminal acidosis and total mixed ration preference in lactating dairy cows. J. Dairy Sci. 96, 6610–6620.
Montaño, M.F., Calderón, J.F., Castrejón, F., Garza, J.D., Pérez, F., Zinn, R.A., 1999. Ruminal alkalizing potential of brucite (Magnesium Hydroxide) and sodium bicarbonate for feedlot cattle. Proceedings. American Society of Animal Science. 50, 343-350.
Neiderfer, K.P., Barnard, A.M., Moyer, K.Z., Trench, A.M., Taylor, A.E., Cronin, S.K., Gressley, T.F., 2020. Effects of calcium carbonate, magnesium oxide and encapsulated sodium bicarbonate on measures of post-ruminal fermentation. J. Anim. Physiol. Anim. Nutr. 104, 802–811.
Neubauer, V., Humer, E., Kröger, I., Braid, T., Wagner, M., Zebeli, Q., 2018. Differences between pH of indwelling sensors and the pH of fluid and solid phase in the rumen of dairy cows fed varying concentrate levels. J. Anim. Physiol. Anim. Nutr. 102, 343–349.
Neville, E.W., Fahey, A.G., Gath, V.P., Molloy, B.P., Taylor, S.J., Mulligan, F.J., 2019. The effect of calcareous marine algae, with or without marine magnesium oxide, and sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. J. Dairy Sci. 102, 8027–8039.
Newbold, C.J., Thomas, P.C., Chamberlain, D.G., 1991. Effect of dietary supplements of sodium bicarbonate with or without additional protein on the utilization of nitrogen in the rumen of sheep receiving a lucerne silage-based diet. Anim. Feed Sci. Technol. 35, 191-198.
Nocek, J.E. 1997. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 80, 1005–1028.
O’Grady, L., Michael, L.D, Finbar J.M., 2008. Subacute ruminal acidosis (SARA) in grazing Irish dairy cows. Vet. J. 176, 44–49.
Okeke, G.C., Buchanan-Smith, J.G., Grieve, D.G., 1983. Effect of sodium bicarbonate on rate of passage and degradation of soybean meal in postpartum dairy cows. J. Dairy Sci. 66, 1023-1031.
Owens, F.N., Secrist, D.S., Hill, W.J., Gill, D.R., 1998. Acidosis in cattle: A review. J. Anim. Sci. 76, 275–286.
Penner, G.B., Beauchemin, K.A., Mutsvangwa, T., 2007. Severity of ruminal acidosis in primiparous Holstein cows during the periparturient period. J. Dairy Sci. 90, 365–375.
Pérez-Ruchel, A., Repetto, J.L., Cajarville, C., 2014. Use of NaHCO3 and MgO as additives for sheep fed only pasture for a restricted period of time per day: effects on intake, digestion and the rumen environment. J. Anim. Physiol. Anim. Nutr. 98, 1068-1074.
Petri, R.M., Schwaiger, T., Penner, G.B., Beauchemin, K.A., Forster, R.J., McKinnon, J.J., McAllister, T.A., 2013. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. App. Environ. Microbiology. 79(12), 3744–3755.
Philippeau, C., Lettat, A., Martin, C., Silberberg, M., Morgavi, D.P., Ferlay, A., Nozière, P., 2017. Effects of bacterial direct-fed microbial on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high-or low-starch diets. J. Dairy Sci. 100, 2637-2650.
Plaizier, J.C., D.O. Krause, G.N. Gozho, B.W. McBride., 2008. Subacute Ruminal acidosis in dairy cows: The physiological causes, incidence, and consequences. Vet. J. 176, 21–31.
Ramos, S.C., Jeong, C.D., Mamuad, L.L., Kim, S.H., Son, A.R., Miguel, M.A., Islam. M., Cho. Y, Lee, S.S., 2021. Enhanced ruminal fermentation parameters and altered rumen bacterial community composition by formulated rumen buffer agents fed to dairy cows with a high-concentrate diet. Agriculture. 11(6), 554.
Ramos, S.C., Kim, S.H., Jeong, C.D., Mamuad, L.L., Son, A.R., Kang, S.H., Cho, Y.I, Kim, T.G, Lee, J.S, Cho, K.K, Lee, S.S, Lee, S.S., 2022. Increasing buffering capacity enhances rumen fermentation characteristics and alters rumen microbiota composition of high-concentrate fed Hanwoo steers. Sci. Rep. 12, 20739.
Rogers, J.A., Davis, C.L., Clark, J.H., 1982. Alteration of rumen fermentation, milk fat synthesis, and nutrient utilization with mineral salts in dairy cows. J. Dairy Sci. 65, 577–586.
Rogers, J.A., Muller, L.D., Davis, C.L., Chalupa, W., Kronfeld, D.S., Karcher, L.F., Cummings, K.R., 1985. Response of dairy cows to sodium bicarbonate and limestone in early lactation. J. Dairy Sci. 68, 646–660.
Russell, J.B., Chow, J.M., 1993. Another theory for the action of ruminal buffer salts: decreased starch fermentation and propionate production. J. Dairy Sci. 76, 826–830.
Santra, A., Chaturvedi, O.H., Tripathi, M.K., Kumar, R., Karim, S.A., 2003. Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Rum. Res. 47, 203-212.
Sen, A.R., Santra, A., Karim, S.A., 2006. Effect of dietary sodium bicarbonate supplementation on carcass and meat quality of high concentrate fed lambs. Small Rum. Res. 65, 122–127.
Sirisan, V., 2017. Strategies to reduce ruminal acidosis by using microorganism. Vet. Integr. Sci. 15, 51-62.
Solorzano, L.C., Armentano, L.E., Grummer, R.R., Dentine, M.R., 1989. Effects of sodium bicarbonate and sodium sesquicarbonate on lactating Holstein cows. J. Dairy Sci. 72, 453–461.
Stefańska, B., Nowak, W., Komisarek, J., Taciak, M., Barszcz, M., Skomiał, J., 2016. Prevalence and consequence of subacute ruminal acidosis in polish dairy herds. J. Anim. Physiol. Anim. Nutr. 101(4), 694-702.
Stevens, C.E., 1970. Fatty acid transport through the rumen epithelium. In: Phillipson, A.T. (Ed.), Physiology of digestion and metabolism in the ruminant. Oriel Press, Newcastle-upon- Tyne, UK., pp. 101-112.
Toprak, N.N., Yilmaz, A., Öztürk, E., Yigit, O., Cedden, F., 2016 Effect of micronized zeolite addition to lamb concentrate feeds on growth performance and some blood chemistry and metabolites. S. Afr. J. Anim. Sci. 46, 313-320.
Tripathi, M.K., Santra, A., Chaturvedi, O.H., Karim, S.A., 2004. Effect of sodium bicarbonate supplementation on ruminal fluid pH, feed intake, nutrient utilization and growth of lambs fed high concentrate diets. Anim. Feed Sci. Technol. 111, 27–39.
Tucker, W.B., Aslam, M., Lema, M., Shin, I.S., Le Ruyet, P., Hogue, J.F., Buchanan, D.S., Miller, T.P., Adams, G.D. 1992. Sodium bicarbonate or multielement buffer via diet or rumen: effects on performance and acid-base status of lactating cows. J. Dairy Sci. 75, 2409–2420.
Tucker, W.B., Hogue, J.F., Aslam, M., Lema, M., Le Ruyet, P., Shin, I.S., Van Koevering, M.T., Vernon, R.K., Adams, G.D., 1993. Controlled ruminal infusion of sodium bicarbonate. 3. Influence of infusion dose on systemic acid-base status, minerals, and ruminal milieu. J Dairy Sci. 76(8), 2222–2234.
Tun, H.M., Li, S., Yoon, I., Meale, S.J., Azevedo, P.A., Khafipour, E., Plaizier, J.C., 2020. Saccharomyces cerevisiae fermentation products (SCFP) stabilize the ruminal microbiota of lactating dairy cows during periods of a depressed rumen pH. BMC Vet. Res. 16, 1–17.
Van Vuuren, Ad.M., Calsamiglia, S., Udén, P., 2012. Rumen health: A 360° analysis. Anim. Feed Sci. Technol. 172, 1–3.
Vicente, A.C.S., de Paula Carlis, M.S., dos Santos, I.J., da Silva, A.L.A., Júnior, P.C.G.D., de Assis, R.G., Sturion, T.U., Biava, J.S., Pires, A.V., Ferreira, E.M., 2022. Performance, nutritional behavior, and carcass characteristics of feedlot lambs fed diets with non-forage fiber source or sodium bicarbonate. Trop. Anim. Health Prod. 54, 287.
Vieira, L.V., Savela, M.F.B., Rahal, N.M., Barbosa, A.A., Saraiva, D.R., Del-Pino, F.A.B., Viviane, R.R., Eliza, R.K., Cássio, C.B., et al., 2024. An assessment on the effects of buffers on the productive, behavioral and metabolic parameters of Holstein dairy cows. Trop. Anim. Health Prod. 56 (7), 255.
Wang, K., Song, D., Zhang, X., Datsomor, O., Jiang, M., Zhao, G., 2024. Effects of high-grain diet on performance, ruminal fermentation, and rumen microbial flora of lactating Holstein dairy cows. Animals. 1, 2522.
Wang, K., Xiong, B., Zhao, X., 2023. Could propionate formation be used to reduce enteric methane emission in ruminants?. Sci. Total Environ. 855, 158867.
Warner, A.C.I., Stacy, B. D., 1972. Water and sodium and potassium movements across the rumen wall of sheep. Q. J. Exp. Physiol. 57, 103-119.
Xiong, F., Liangkang, Lv., Yingyi, L., Hewei, C., Hongjian, Y., 2024. Supplementation of feedlot lambs with magnesium oxide and sodium bicarbonate: Effects on performance, nutrient digestibility, rumen environment, serum biochemistry and antioxidant indices. Anim. Feed Sci. Tech. 311, 115951.
Xu, S., Harrison, J.H., Riley, R.E., Loney, K.A., 1994. Effect of buffer addition to high grain total mixed rations on rumen pH, feed intake, milk production, and milk composition. J. Dairy Sci. 77, 782–788.
Yang, W.Z., Beauchemin, K.A., 2006. Effects of physically effective fiber on chewing activity and ruminal pH of dairy cows fed diets based on barley silage. J. Dairy. Sci. 89(1), 217–228.
Zhang, T., Mu, Y., Zhang, R., Xue, Y., Guo, C., Qi, W., Zhang, J., Mao, S., 2022. Responsive changes of rumen microbiome and metabolome in dairy cows with different susceptibility to subacute ruminal acidosis. Anim. Nutr. 8(1), 331–340.